DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Strictly non-adiabatic quantum control of the acetylene dication using an infrared field

Abstract

We demonstrate the existence of a strictly non-adiabatic control pathway in deprotonation of the acetylene dication. This pathway is identified experimentally by measuring a kinetic energy shift in an ion coincidence experiment. We use a time dependent Schrödinger equation simulation to identify which properties most strongly affect our control. We find that resonant control around conical intersections is limited by the speed of non-adiabatic dynamics.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [1]
  1. SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); Stanford Univ., CA (United States)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE)
  3. Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1632106
Alternate Identifier(s):
OSTI ID: 1617752
Grant/Contract Number:  
AC02-76SF00515; 1504584
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 152; Journal Issue: 18; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Quantum chemical dynamics; Photoionization; Adiabatic process; Potential energy surfaces; Quantum control theory; Stark effect; Deprotonation

Citation Formats

Liekhus-Schmaltz, Chelsea, Zhu, Xiaolei, McCracken, Gregory A., Cryan, James P., Martinez, Todd J., and Bucksbaum, Philip H. Strictly non-adiabatic quantum control of the acetylene dication using an infrared field. United States: N. p., 2020. Web. doi:10.1063/5.0007058.
Liekhus-Schmaltz, Chelsea, Zhu, Xiaolei, McCracken, Gregory A., Cryan, James P., Martinez, Todd J., & Bucksbaum, Philip H. Strictly non-adiabatic quantum control of the acetylene dication using an infrared field. United States. https://doi.org/10.1063/5.0007058
Liekhus-Schmaltz, Chelsea, Zhu, Xiaolei, McCracken, Gregory A., Cryan, James P., Martinez, Todd J., and Bucksbaum, Philip H. Thu . "Strictly non-adiabatic quantum control of the acetylene dication using an infrared field". United States. https://doi.org/10.1063/5.0007058. https://www.osti.gov/servlets/purl/1632106.
@article{osti_1632106,
title = {Strictly non-adiabatic quantum control of the acetylene dication using an infrared field},
author = {Liekhus-Schmaltz, Chelsea and Zhu, Xiaolei and McCracken, Gregory A. and Cryan, James P. and Martinez, Todd J. and Bucksbaum, Philip H.},
abstractNote = {We demonstrate the existence of a strictly non-adiabatic control pathway in deprotonation of the acetylene dication. This pathway is identified experimentally by measuring a kinetic energy shift in an ion coincidence experiment. We use a time dependent Schrödinger equation simulation to identify which properties most strongly affect our control. We find that resonant control around conical intersections is limited by the speed of non-adiabatic dynamics.},
doi = {10.1063/5.0007058},
journal = {Journal of Chemical Physics},
number = 18,
volume = 152,
place = {United States},
year = {2020},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Figures / Tables:

FIG. 1 FIG. 1: The potential energy of the acetylene dication along the C-H stretch calculated using a Fractional-Occupation Molecular Orbital Complete-Active-Space Configuration Interaction (FOMO-CASCI) level of theory relative to the ground state neutral molecule. The upper panel shows the field-free 3Σ$^{-}_{g}$ state as a solid black curve. The field-free 3IIu ismore » the blue curve. The green dotted line is the kinetic energy control pathway. This pathway will result in a KER of 4 eV. Dipole coupling can also occur after the Cl, as shown by the yellow dashed line. This pathway results in a KER of 5 eV. The lower panel shows the dynamic Stark shifted potential curves. The diagonal terms of the dipole coupling matrix represent a Stark shift and can therefore affect the position of the Cl. This can change the population distribution after interacting with a field.« less

Save / Share:

Works referenced in this record:

Optimal control of ultrafast cis - trans photoisomerization of retinal in rhodopsin via a conical intersection
journal, October 2005

  • Abe, Mayumi; Ohtsuki, Yukiyoshi; Fujimura, Yuichi
  • The Journal of Chemical Physics, Vol. 123, Issue 14
  • DOI: 10.1063/1.2034488

Control of Nuclear Dynamics through Conical Intersections and Electronic Coherences
journal, March 2018


Acetylene at the Threshold of Isomerization
journal, April 2000

  • Jacobson, Matthew P.; Field, Robert W.
  • The Journal of Physical Chemistry A, Vol. 104, Issue 14
  • DOI: 10.1021/jp992428u

Imaging CF 3 I conical intersection and photodissociation dynamics with ultrafast electron diffraction
journal, July 2018


Ultrafast electron diffraction imaging of bond breaking in di-ionized acetylene
journal, October 2016


Ab initio floating occupation molecular orbital-complete active space configuration interaction: An efficient approximation to CASSCF
journal, June 2010

  • Slavíček, Petr; Martínez, Todd J.
  • The Journal of Chemical Physics, Vol. 132, Issue 23
  • DOI: 10.1063/1.3436501

Angular and energy distribution of fragment ions in dissociative double photoionization of acetylene molecules at 39 eV
journal, May 2012

  • Alagia, M.; Callegari, C.; Candori, P.
  • The Journal of Chemical Physics, Vol. 136, Issue 20
  • DOI: 10.1063/1.4720350

The Landau−Zener Formula
journal, May 2005

  • Wittig, Curt
  • The Journal of Physical Chemistry B, Vol. 109, Issue 17
  • DOI: 10.1021/jp040627u

Diabolical conical intersections
journal, October 1996


Photoelectron–photoion–photoion momentum spectroscopy as a direct probe of the core-hole localization in C 1s photoionization of C 2 H 2
journal, October 2007

  • Adachi, Jun-ichi; Hosaka, Kouichi; Teramoto, Takahiro
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 40, Issue 20
  • DOI: 10.1088/0953-4075/40/20/f01

Fragmentation pathways for selected electronic states of the acetylene dication
journal, April 2008

  • Osipov, T.; Rescigno, T. N.; Weber, T.
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 41, Issue 9
  • DOI: 10.1088/0953-4075/41/9/091001

Zur Quantentheorie der Molekeln
journal, January 1927


Isomerization Through Conical Intersections
journal, May 2007


Control of 1,3-Cyclohexadiene Photoisomerization Using Light-Induced Conical Intersections
journal, December 2011

  • Kim, Jaehee; Tao, Hongli; White, James L.
  • The Journal of Physical Chemistry A, Vol. 116, Issue 11
  • DOI: 10.1021/jp208384b

Ultrafast isomerization initiated by X-ray core ionization
journal, September 2015

  • Liekhus-Schmaltz, Chelsea E.; Tenney, Ian; Osipov, Timur
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9199

BEYOND BORN-OPPENHEIMER: Molecular Dynamics Through a Conical Intersection
journal, June 2004


Selective Solar-Driven Reduction of CO 2 to Methanol Using a Catalyzed p-GaP Based Photoelectrochemical Cell
journal, May 2008

  • Barton, Emily E.; Rampulla, David M.; Bocarsly, Andrew B.
  • Journal of the American Chemical Society, Vol. 130, Issue 20
  • DOI: 10.1021/ja0776327

Coherent control using kinetic energy and the geometric phase of a conical intersection
journal, October 2016

  • Liekhus-Schmaltz, Chelsea; McCracken, Gregory A.; Kaldun, Andreas
  • The Journal of Chemical Physics, Vol. 145, Issue 14
  • DOI: 10.1063/1.4964392

Toward an Accurate Density-Functional Tight-Binding Description of Zinc-Containing Compounds
journal, February 2009

  • Moreira, Ney H.; Dolgonos, Grygoriy; Aradi, Bálint
  • Journal of Chemical Theory and Computation, Vol. 5, Issue 3
  • DOI: 10.1021/ct800455a

Photo-double-ionization of ethylene and acetylene near threshold
journal, January 2014


Non-Adiabatic Crossing of Energy Levels
journal, September 1932

  • Zener, C.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 137, Issue 833
  • DOI: 10.1098/rspa.1932.0165

A Stark Future for Quantum Control
journal, February 2011

  • Townsend, Dave; Sussman, Benjamin J.; Stolow, Albert
  • The Journal of Physical Chemistry A, Vol. 115, Issue 4
  • DOI: 10.1021/jp109095d

Theoretical study of isomerization and dissociation of acetylene dication in the ground and excited electronic states
journal, October 2005

  • Zyubina, T. S.; Dyakov, Y. A.; Lin, S. H.
  • The Journal of Chemical Physics, Vol. 123, Issue 13
  • DOI: 10.1063/1.2050649

Ab initio multiple spawning on laser-dressed states: a study of 1,3-cyclohexadiene photoisomerization via light-induced conical intersections
journal, July 2015

  • Kim, Jaehee; Tao, Hongli; Martinez, Todd J.
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 48, Issue 16
  • DOI: 10.1088/0953-4075/48/16/164003

Vinylidene dissociation following the Auger-electron decay of inner-shell ionized acetylene
journal, April 2008


Tabletop imaging of structural evolutions in chemical reactions demonstrated for the acetylene cation
journal, July 2014

  • Ibrahim, Heide; Wales, Benji; Beaulieu, Samuel
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5422

Probing and controlling non-Born–Oppenheimer dynamics in highly excited molecular ions
journal, January 2012

  • Zhou, X.; Ranitovic, P.; Hogle, C. W.
  • Nature Physics, Vol. 8, Issue 3
  • DOI: 10.1038/nphys2211

Experimental probing of conical intersection dynamics in the photodissociation of thioanisole
journal, July 2010

  • Lim, Jeong Sik; Kim, Sang Kyu
  • Nature Chemistry, Vol. 2, Issue 8
  • DOI: 10.1038/nchem.702

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.