DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molecular‐Level Overhaul of γ‐Aminopropyl Aminosilicone/Triethylene Glycol Post‐Combustion CO 2 ‐Capture Solvents

Abstract

Abstract Capturing carbon dioxide from post‐combustion gas streams is an energy‐intensive process that is required prior to either converting or sequestering CO 2 . Although a few commercial 1st and 2nd generation aqueous amine technologies have been proposed, the cost of capturing CO 2 with these technologies remains high. One approach to decrease costs of capture has been the development of water‐lean solvents that aim to increase efficiency by reducing the water content in solution. Water‐lean solvents, such as γ‐aminopropyl aminosilicone/triethylene glycol (GAP/TEG), are promising technologies, with the potential to halve the parasitic load to a coal‐fired power plant, albeit only if high solution viscosities and hydrolysis of the siloxane moieties can be mitigated. This study concerns an integrated multidisciplinary approach to overhaul the GAP/TEG solvent system at the molecular level to mitigate hydrolysis while also reducing viscosity. Cosolvents and diluents are found to have negligible effects on viscosity and are not needed. This finding allows for the design of single‐component siloxane‐free diamine derivatives with site‐specific incorporation of selective chemical moieties for direct placement and orientation of hydrogen bonding to reduce viscosity. Ultimately, these new formulations are less susceptible to hydrolysis and exhibit up to a 98 % reduction in viscosity comparedmore » to the initial GAP/TEG formulation.« less

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3]; ORCiD logo [2];  [3];  [3];  [3];  [2];  [2]; ORCiD logo [4]; ORCiD logo [5]
  1. Physical Sciences Division Pacific Northwest National Laboratory Richland WA 99352 USA, Present Address: Chemical and Materials Engineering Department University of Nevada Reno NV 89557 USA
  2. Energy Processes and Materials Division Pacific Northwest National Laboratory Richland WA 99352 USA
  3. Physical Sciences Division Pacific Northwest National Laboratory Richland WA 99352 USA
  4. GE Global Research 1 Research Circle Niskayuna NY 12309 USA
  5. Energy Processes and Materials Division Pacific Northwest National Laboratory Richland WA 99352 USA, Washington State University Department of Chemical Engineering Pullman WA 99164 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1632036
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
ChemSusChem
Additional Journal Information:
Journal Name: ChemSusChem Journal Volume: 13 Journal Issue: 13; Journal ID: ISSN 1864-5631
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Cantu, David C., Malhotra, Deepika, Nguyen, Manh‐Thuong, Koech, Phillip K., Zhang, Difan, Glezakou, Vassiliki‐Alexandra, Rousseau, Roger, Page, Jordan, Zheng, Richard, Perry, Robert J., and Heldebrant, David J. Molecular‐Level Overhaul of γ‐Aminopropyl Aminosilicone/Triethylene Glycol Post‐Combustion CO 2 ‐Capture Solvents. Germany: N. p., 2020. Web. doi:10.1002/cssc.202000724.
Cantu, David C., Malhotra, Deepika, Nguyen, Manh‐Thuong, Koech, Phillip K., Zhang, Difan, Glezakou, Vassiliki‐Alexandra, Rousseau, Roger, Page, Jordan, Zheng, Richard, Perry, Robert J., & Heldebrant, David J. Molecular‐Level Overhaul of γ‐Aminopropyl Aminosilicone/Triethylene Glycol Post‐Combustion CO 2 ‐Capture Solvents. Germany. https://doi.org/10.1002/cssc.202000724
Cantu, David C., Malhotra, Deepika, Nguyen, Manh‐Thuong, Koech, Phillip K., Zhang, Difan, Glezakou, Vassiliki‐Alexandra, Rousseau, Roger, Page, Jordan, Zheng, Richard, Perry, Robert J., and Heldebrant, David J. Fri . "Molecular‐Level Overhaul of γ‐Aminopropyl Aminosilicone/Triethylene Glycol Post‐Combustion CO 2 ‐Capture Solvents". Germany. https://doi.org/10.1002/cssc.202000724.
@article{osti_1632036,
title = {Molecular‐Level Overhaul of γ‐Aminopropyl Aminosilicone/Triethylene Glycol Post‐Combustion CO 2 ‐Capture Solvents},
author = {Cantu, David C. and Malhotra, Deepika and Nguyen, Manh‐Thuong and Koech, Phillip K. and Zhang, Difan and Glezakou, Vassiliki‐Alexandra and Rousseau, Roger and Page, Jordan and Zheng, Richard and Perry, Robert J. and Heldebrant, David J.},
abstractNote = {Abstract Capturing carbon dioxide from post‐combustion gas streams is an energy‐intensive process that is required prior to either converting or sequestering CO 2 . Although a few commercial 1st and 2nd generation aqueous amine technologies have been proposed, the cost of capturing CO 2 with these technologies remains high. One approach to decrease costs of capture has been the development of water‐lean solvents that aim to increase efficiency by reducing the water content in solution. Water‐lean solvents, such as γ‐aminopropyl aminosilicone/triethylene glycol (GAP/TEG), are promising technologies, with the potential to halve the parasitic load to a coal‐fired power plant, albeit only if high solution viscosities and hydrolysis of the siloxane moieties can be mitigated. This study concerns an integrated multidisciplinary approach to overhaul the GAP/TEG solvent system at the molecular level to mitigate hydrolysis while also reducing viscosity. Cosolvents and diluents are found to have negligible effects on viscosity and are not needed. This finding allows for the design of single‐component siloxane‐free diamine derivatives with site‐specific incorporation of selective chemical moieties for direct placement and orientation of hydrogen bonding to reduce viscosity. Ultimately, these new formulations are less susceptible to hydrolysis and exhibit up to a 98 % reduction in viscosity compared to the initial GAP/TEG formulation.},
doi = {10.1002/cssc.202000724},
journal = {ChemSusChem},
number = 13,
volume = 13,
place = {Germany},
year = {Fri Jun 05 00:00:00 EDT 2020},
month = {Fri Jun 05 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/cssc.202000724

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Water-Lean Solvents for Co2 Capture Will Not Use Less Energy than Aqueous Amines
journal, January 2019


Structure–property reduced order model for viscosity prediction in single-component CO 2 -binding organic liquids
journal, January 2016

  • Cantu, David C.; Malhotra, Deepika; Koech, Phillip K.
  • Green Chemistry, Vol. 18, Issue 22
  • DOI: 10.1039/C6GC02203K

Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids
journal, January 1996

  • Jorgensen, William L.; Maxwell, David S.; Tirado-Rives, Julian
  • Journal of the American Chemical Society, Vol. 118, Issue 45
  • DOI: 10.1021/ja9621760

Directed Hydrogen Bond Placement: Low Viscosity Amine Solvents for CO 2 Capture
journal, March 2019

  • Malhotra, Deepika; Cantu, David C.; Koech, Phillip K.
  • ACS Sustainable Chemistry & Engineering, Vol. 7, Issue 8
  • DOI: 10.1021/acssuschemeng.8b05481

Automated gas burette system for evolved hydrogen measurements
journal, August 2008

  • Zheng, Feng; Rassat, Scot D.; Helderandt, David J.
  • Review of Scientific Instruments, Vol. 79, Issue 8
  • DOI: 10.1063/1.2968715

Mesoscopic Structure Facilitates Rapid CO 2 Transport and Reactivity in CO 2 Capture Solvents
journal, September 2018


Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides
journal, July 2001

  • Kaminski, George A.; Friesner, Richard A.; Tirado-Rives, Julian
  • The Journal of Physical Chemistry B, Vol. 105, Issue 28
  • DOI: 10.1021/jp003919d

A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions
journal, November 2006

  • Zhao, Yan; Truhlar, Donald G.
  • The Journal of Chemical Physics, Vol. 125, Issue 19, Article No. 194101
  • DOI: 10.1063/1.2370993

Shell Cansolv CO2 capture technology: Achievement from First Commercial Plant
journal, January 2014


Computer-gestütztes Design ionischer Flüssigkeiten zur CO 2 -Absorption
journal, May 2015

  • Firaha, Dzmitry S.; Hollóczki, Oldamur; Kirchner, Barbara
  • Angewandte Chemie, Vol. 127, Issue 27
  • DOI: 10.1002/ange.201502296

Aqueous piperazine as the new standard for CO2 capture technology
journal, July 2011

  • Rochelle, Gary; Chen, Eric; Freeman, Stephanie
  • Chemical Engineering Journal, Vol. 171, Issue 3
  • DOI: 10.1016/j.cej.2011.02.011

Comparison of simple potential functions for simulating liquid water
journal, July 1983

  • Jorgensen, William L.; Chandrasekhar, Jayaraman; Madura, Jeffry D.
  • The Journal of Chemical Physics, Vol. 79, Issue 2
  • DOI: 10.1063/1.445869

Tuning the Carbon Dioxide Absorption in Amino Acid Ionic Liquids
journal, May 2016


Secondary Amine Functional Disiloxanes as CO 2 Sorbents
journal, April 2014

  • O’Brien, Michael J.; Farnum, Rachel L.; Perry, Robert J.
  • Energy & Fuels, Vol. 28, Issue 5
  • DOI: 10.1021/ef500387t

Measuring the Absorption Rate of CO 2 in Nonaqueous CO 2 -Binding Organic Liquid Solvents with a Wetted-Wall Apparatus
journal, September 2015

  • Mathias, Paul M.; Zheng, Feng; Heldebrant, David J.
  • ChemSusChem, Vol. 8, Issue 21
  • DOI: 10.1002/cssc.201500288

Structure of ionic liquids of 1-alkyl-3-methylimidazolium cations: A systematic computer simulation study
journal, January 2004

  • Urahata, Sérgio M.; Ribeiro, Mauro C. C.
  • The Journal of Chemical Physics, Vol. 120, Issue 4
  • DOI: 10.1063/1.1635356

GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
journal, September 2015


Measuring CO 2 and N 2 O Mass Transfer into GAP-1 CO 2 –Capture Solvents at Varied Water Loadings
journal, April 2017

  • Whyatt, Greg A.; Zwoster, Andy; Zheng, Feng
  • Industrial & Engineering Chemistry Research, Vol. 56, Issue 16
  • DOI: 10.1021/acs.iecr.7b00193

Water-Lean Solvents for Post-Combustion CO 2 Capture: Fundamentals, Uncertainties, Opportunities, and Outlook
journal, May 2017

  • Heldebrant, David J.; Koech, Phillip K.; Glezakou, Vassiliki-Alexandra
  • Chemical Reviews, Vol. 117, Issue 14
  • DOI: 10.1021/acs.chemrev.6b00768

Thermodynamic analysis of CO2 capture solvents
journal, November 2013

  • Mathias, Paul M.; Reddy, Satish; Smith, Arnold
  • International Journal of Greenhouse Gas Control, Vol. 19
  • DOI: 10.1016/j.ijggc.2013.09.001

Evaluating Transformational Solvent Systems for Post-combustion CO2 Separations
journal, January 2014


Non-Aqueous Solvent (NAS) CO2 Capture Process
journal, January 2014


Amine Scrubbing for CO2 Capture
journal, September 2009


Quantum Mechanical Continuum Solvation Models
journal, August 2005

  • Tomasi, Jacopo; Mennucci, Benedetta; Cammi, Roberto
  • Chemical Reviews, Vol. 105, Issue 8
  • DOI: 10.1021/cr9904009

Development of High‐Capacity and Water‐Lean CO 2 Absorbents by a Concise Molecular Design Strategy through Viscosity Control
journal, November 2019


Nanostructural Organization in Ionic Liquids
journal, February 2006

  • Canongia Lopes, José N. A.; Pádua, Agílio A. H.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 7
  • DOI: 10.1021/jp056006y

Aminosilicone Solvents for CO2 Capture
journal, August 2010

  • Perry, Robert J.; Grocela-Rocha, Teresa A.; O'Brien, Michael J.
  • ChemSusChem, Vol. 3, Issue 8, p. 919-930
  • DOI: 10.1002/cssc.201000077

Computer-Aided Design of Ionic Liquids as CO 2 Absorbents
journal, May 2015

  • Firaha, Dzmitry S.; Hollóczki, Oldamur; Kirchner, Barbara
  • Angewandte Chemie International Edition, Vol. 54, Issue 27
  • DOI: 10.1002/anie.201502296

CO 2 Capture Using Solutions of Alkanolamines and Aminosilicones
journal, March 2012

  • Perry, Robert J.; Davis, Jason L.
  • Energy & Fuels, Vol. 26, Issue 4
  • DOI: 10.1021/ef201963m

Dynamic Acid/Base Equilibrium in Single Component Switchable Ionic Liquids and Consequences on Viscosity
journal, April 2016

  • Cantu, David C.; Lee, Juntaek; Lee, Mal-Soon
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 9
  • DOI: 10.1021/acs.jpclett.6b00395

Reinventing Design Principles for Developing Low-Viscosity Carbon Dioxide-Binding Organic Liquids for Flue Gas Clean Up
journal, January 2017

  • Malhotra, Deepika; Koech, Phillip K.; Heldebrant, David J.
  • ChemSusChem, Vol. 10, Issue 3
  • DOI: 10.1002/cssc.201601622