skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Matrix ensembles with global symmetries and ’t Hooft anomalies from 2d gauge theory

Abstract

The Hilbert space of a quantum system with internal global symmetry G decomposes into sectors labelled by irreducible representations of G. If the system is chaotic, the energies in each sector should separately resemble ordinary random matrix theory. We show that such “sector-wise” random matrix ensembles arise as the boundary dual of two- dimensional gravity with a G gauge field in the bulk. Within each sector, the eigenvalue density is enhanced by a nontrivial factor of the dimension of the representation, and the ground state energy is determined by the quadratic Casimir. We study the consequences of ’t Hooft anomalies in the matrix ensembles, which are incorporated by adding specific topological terms to the gauge theory action. The effect is to introduce projective representations into the decomposition of the Hilbert space. Finally, we consider ensembles with G symmetry and time reversal symmetry, and analyze a simple case of a mixed anomaly between time reversal and an internal $$\mathbb{Z}$$2 symmetry.

Publication Date:
Research Org.:
Institute for Advanced Study, Princeton, NJ (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1631983
Grant/Contract Number:  
SC0009988
Resource Type:
Accepted Manuscript
Journal Name:
Journal of High Energy Physics (Online)
Additional Journal Information:
Journal Name: Journal of High Energy Physics (Online); Journal Volume: 2020; Journal Issue: 4; Journal ID: ISSN 1029-8479
Publisher:
Springer Berlin
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; 2D Gravity; AdS-CFT Correspondence; Anomalies in Field and String Theories; Field Theories in Lower Dimensions; High Energy Physics - Theory; Condensed Matter - Strongly Correlated Electrons

Citation Formats

Matrix ensembles with global symmetries and ’t Hooft anomalies from 2d gauge theory. United States: N. p., 2020. Web. https://doi.org/10.1007/JHEP04(2020)186.
Matrix ensembles with global symmetries and ’t Hooft anomalies from 2d gauge theory. United States. https://doi.org/10.1007/JHEP04(2020)186
Tue . "Matrix ensembles with global symmetries and ’t Hooft anomalies from 2d gauge theory". United States. https://doi.org/10.1007/JHEP04(2020)186. https://www.osti.gov/servlets/purl/1631983.
@article{osti_1631983,
title = {Matrix ensembles with global symmetries and ’t Hooft anomalies from 2d gauge theory},
author = {None, None},
abstractNote = {The Hilbert space of a quantum system with internal global symmetry G decomposes into sectors labelled by irreducible representations of G. If the system is chaotic, the energies in each sector should separately resemble ordinary random matrix theory. We show that such “sector-wise” random matrix ensembles arise as the boundary dual of two- dimensional gravity with a G gauge field in the bulk. Within each sector, the eigenvalue density is enhanced by a nontrivial factor of the dimension of the representation, and the ground state energy is determined by the quadratic Casimir. We study the consequences of ’t Hooft anomalies in the matrix ensembles, which are incorporated by adding specific topological terms to the gauge theory action. The effect is to introduce projective representations into the decomposition of the Hilbert space. Finally, we consider ensembles with G symmetry and time reversal symmetry, and analyze a simple case of a mixed anomaly between time reversal and an internal $\mathbb{Z}$2 symmetry.},
doi = {10.1007/JHEP04(2020)186},
journal = {Journal of High Energy Physics (Online)},
number = 4,
volume = 2020,
place = {United States},
year = {2020},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Bilocal regularization of models of random surfaces
journal, January 1985


Chaos in AdS 2 Holography
journal, September 2016


Gravitation and hamiltonian structure in two spacetime dimensions
journal, June 1983


Loop equations and 1N expansion
journal, December 1983


Unoriented strings and matrix ensembles
journal, August 1990


Lower dimensional gravity
journal, January 1985


Quantum Yang-Mills on a Riemann surface
journal, September 1991

  • Fine, Dana S.
  • Communications in Mathematical Physics, Vol. 140, Issue 2
  • DOI: 10.1007/BF02099502

Critical properties of randomly triangulated planar random surfaces
journal, July 1985


Quantum Yang-Mills on the two-sphere
journal, November 1990

  • Fine, Dana S.
  • Communications in Mathematical Physics, Vol. 134, Issue 2
  • DOI: 10.1007/BF02097703

Planar diagrams
journal, February 1978

  • Brézin, E.; Itzykson, C.; Parisi, G.
  • Communications in Mathematical Physics, Vol. 59, Issue 1
  • DOI: 10.1007/BF01614153