skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Highly Efficient All-Solid-State Lithium/Electrolyte Interface Induced by an Energetic Reaction

Abstract

Garnet-phase solid-state electrolytes, with high ionic conductivity and wide electrochemical windows, promise safe and energy-dense Li metal batteries. However, integrating them with Li metal faces crucial challenges including large resistance and dendrite formation at the interface, and therefore current Li/garnet electrodes, albeit with delicate interfacial designs, cannot rival liquid-electrolyte Li metal electrodes in performance. In this work, we make use of the energetic chemical reaction between Zn(NO3)2 and Li to create a solid-state interface between Li metal and Li6.4La3Zr1.4Ta0.6O12 (LLZTO) electrolyte. This interlayer, composed of Zn, ZnLix alloy, Li3N, Li2O and other species, possesses strong affinities with both Li metal and LLZTO and affords highly efficient conductive pathways for Li+ transport through the interface. The unique structure and properties of the interlayer lead to Li metal anodes with longer cycle life, higher efficiency and better safety compared to the current best Li metal electrodes operating in liquid electrolytes while retaining comparable capacity, rate, and overpotential. Our all-solid-state Li||Li cells can operate at very demanding current-capacity conditions of 4 mA/cm2-8 mAh/cm2. Thousands of hours of continuous cycling are achieved at Coulombic efficiency > 99.5% without dendrite formation or side reactions with the electrolyte.

Authors:
 [1];  [1];  [2];  [1];  [1];  [2]; ORCiD logo [1]
  1. Yale Univ., New Haven, CT (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1631927
Report Number(s):
BNL-215969-2020-JAAM
Journal ID: ISSN 1433-7851
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Name: Angewandte Chemie (International Edition); Journal Volume: 59; Journal Issue: 33; Journal ID: ISSN 1433-7851
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; electrode/electrolyte interface; garnet electrolytes; Li metal anodes; reaction-induced interlayers; solid-state batteries

Citation Formats

Zhong, Yiren, Xie, Yujun, Hwang, Sooyeon, Wang, Qian, Cha, Judy J., Su, Dong, and Wang, Hailiang. A Highly Efficient All-Solid-State Lithium/Electrolyte Interface Induced by an Energetic Reaction. United States: N. p., 2020. Web. https://doi.org/10.1002/anie.202004477.
Zhong, Yiren, Xie, Yujun, Hwang, Sooyeon, Wang, Qian, Cha, Judy J., Su, Dong, & Wang, Hailiang. A Highly Efficient All-Solid-State Lithium/Electrolyte Interface Induced by an Energetic Reaction. United States. https://doi.org/10.1002/anie.202004477
Zhong, Yiren, Xie, Yujun, Hwang, Sooyeon, Wang, Qian, Cha, Judy J., Su, Dong, and Wang, Hailiang. Mon . "A Highly Efficient All-Solid-State Lithium/Electrolyte Interface Induced by an Energetic Reaction". United States. https://doi.org/10.1002/anie.202004477. https://www.osti.gov/servlets/purl/1631927.
@article{osti_1631927,
title = {A Highly Efficient All-Solid-State Lithium/Electrolyte Interface Induced by an Energetic Reaction},
author = {Zhong, Yiren and Xie, Yujun and Hwang, Sooyeon and Wang, Qian and Cha, Judy J. and Su, Dong and Wang, Hailiang},
abstractNote = {Garnet-phase solid-state electrolytes, with high ionic conductivity and wide electrochemical windows, promise safe and energy-dense Li metal batteries. However, integrating them with Li metal faces crucial challenges including large resistance and dendrite formation at the interface, and therefore current Li/garnet electrodes, albeit with delicate interfacial designs, cannot rival liquid-electrolyte Li metal electrodes in performance. In this work, we make use of the energetic chemical reaction between Zn(NO3)2 and Li to create a solid-state interface between Li metal and Li6.4La3Zr1.4Ta0.6O12 (LLZTO) electrolyte. This interlayer, composed of Zn, ZnLix alloy, Li3N, Li2O and other species, possesses strong affinities with both Li metal and LLZTO and affords highly efficient conductive pathways for Li+ transport through the interface. The unique structure and properties of the interlayer lead to Li metal anodes with longer cycle life, higher efficiency and better safety compared to the current best Li metal electrodes operating in liquid electrolytes while retaining comparable capacity, rate, and overpotential. Our all-solid-state Li||Li cells can operate at very demanding current-capacity conditions of 4 mA/cm2-8 mAh/cm2. Thousands of hours of continuous cycling are achieved at Coulombic efficiency > 99.5% without dendrite formation or side reactions with the electrolyte.},
doi = {10.1002/anie.202004477},
journal = {Angewandte Chemie (International Edition)},
number = 33,
volume = 59,
place = {United States},
year = {2020},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Negating interfacial impedance in garnet-based solid-state Li metal batteries
journal, December 2016

  • Han, Xiaogang; Gong, Yunhui; Fu, Kun (Kelvin)
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4821

Optimizing Li+ conductivity in a garnet framework
journal, January 2012

  • Li, Yutao; Han, Jian- Tao; Wang, Chang- An
  • Journal of Materials Chemistry, Vol. 22, Issue 30
  • DOI: 10.1039/c2jm31413d

Optimized LiFePO[sub 4] for Lithium Battery Cathodes
journal, January 2001

  • Yamada, A.; Chung, S. C.; Hinokuma, K.
  • Journal of The Electrochemical Society, Vol. 148, Issue 3
  • DOI: 10.1149/1.1348257

High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes
journal, January 2019


Origin of High Li + Conduction in Doped Li 7 La 3 Zr 2 O 12 Garnets
journal, August 2015


Li 3 N-Modified Garnet Electrolyte for All-Solid-State Lithium Metal Batteries Operated at 40 °C
journal, October 2018


The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors
journal, June 2004

  • Alarco, Pierre-Jean; Abu-Lebdeh, Yaser; Abouimrane, Ali
  • Nature Materials, Vol. 3, Issue 7
  • DOI: 10.1038/nmat1158

Dopant‐Dependent Stability of Garnet Solid Electrolyte Interfaces with Lithium Metal
journal, January 2019

  • Zhu, Yisi; Connell, Justin G.; Tepavcevic, Sanja
  • Advanced Energy Materials, Vol. 9, Issue 12
  • DOI: 10.1002/aenm.201803440

Garnet Electrolytes for Solid State Batteries: Visualization of Moisture-Induced Chemical Degradation and Revealing Its Impact on the Li-Ion Dynamics
journal, May 2018


Li+ ion conductivity and diffusion mechanism in α-Li3N and β-Li3N
journal, January 2010

  • Li, Wen; Wu, Guotao; Araújo, C. Moysés
  • Energy & Environmental Science, Vol. 3, Issue 10
  • DOI: 10.1039/c0ee00052c

Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations
journal, October 2015

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 42
  • DOI: 10.1021/acsami.5b07517

Functional metal–organic framework boosting lithium metal anode performance via chemical interactions
journal, January 2017

  • Liu, Wen; Mi, Yingying; Weng, Zhe
  • Chemical Science, Vol. 8, Issue 6
  • DOI: 10.1039/C7SC00668C

Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries
journal, June 2018


The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries
journal, January 2018

  • Wu, Bingbin; Wang, Shanyu; Lochala, Joshua
  • Energy & Environmental Science, Vol. 11, Issue 7
  • DOI: 10.1039/C8EE00540K

In situ formation of a bifunctional interlayer enabled by a conversion reaction to initiatively prevent lithium dendrites in a garnet solid electrolyte
journal, January 2019

  • Fu, Jiamin; Yu, Pengfei; Zhang, Nian
  • Energy & Environmental Science, Vol. 12, Issue 4
  • DOI: 10.1039/C8EE03390K

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework
journal, March 2018

  • Yang, Chunpeng; Zhang, Lei; Liu, Boyang
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 15
  • DOI: 10.1073/pnas.1719758115

Tracking lithium transport and electrochemical reactions in nanoparticles
journal, January 2012

  • Wang, Feng; Yu, Hui-Chia; Chen, Min-Hua
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2185

Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries
journal, July 2018


In Situ Lithiophilic Layer from H + /Li + Exchange on Garnet Surface for the Stable Lithium-Solid Electrolyte Interface
journal, June 2019

  • Cai, Mingli; Lu, Yang; Su, Jianmeng
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 38
  • DOI: 10.1021/acsami.9b13190

Solid Garnet Batteries
journal, May 2019


Building an Interfacial Framework: Li/Garnet Interface Stabilization through a Cu 6 Sn 5 Layer
journal, June 2019


Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries
journal, October 2017


Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries
journal, April 2018

  • Li, Yutao; Chen, Xi; Dolocan, Andrei
  • Journal of the American Chemical Society, Vol. 140, Issue 20
  • DOI: 10.1021/jacs.8b03106

Design principles for electrolytes and interfaces for stable lithium-metal batteries
journal, September 2016


Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte
journal, July 2019


Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet-Type Solid-State Li Batteries
journal, May 2018


Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
journal, July 2017


Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries
journal, March 2019


Formation and Evolution of Lithium Metal Anode–Carbonate Electrolyte Interphases
journal, July 2019


Garnet-type solid-state fast Li ion conductors for Li batteries: critical review
journal, January 2014

  • Thangadurai, Venkataraman; Narayanan, Sumaletha; Pinzaru, Dana
  • Chemical Society Reviews, Vol. 43, Issue 13
  • DOI: 10.1039/c4cs00020j

Fundamentals of inorganic solid-state electrolytes for batteries
journal, August 2019

  • Famprikis, Theodosios; Canepa, Pieremanuele; Dawson, James A.
  • Nature Materials, Vol. 18, Issue 12
  • DOI: 10.1038/s41563-019-0431-3

Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li 7 La 3 Zr 2 O 12
journal, September 2017


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

An Electron/Ion Dual‐Conductive Alloy Framework for High‐Rate and High‐Capacity Solid‐State Lithium‐Metal Batteries
journal, September 2018


High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes
journal, May 2018

  • Shi, Qiuwei; Zhong, Yiren; Wu, Min
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 22
  • DOI: 10.1073/pnas.1803634115

Cycling and Failing of Lithium Metal Anodes in Carbonate Electrolyte
journal, August 2018

  • Zhang, Yifang; Zhong, Yiren; Shi, Qiuwei
  • The Journal of Physical Chemistry C, Vol. 122, Issue 37
  • DOI: 10.1021/acs.jpcc.8b06650

Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
journal, April 1997

  • Padhi, A. K.
  • Journal of The Electrochemical Society, Vol. 144, Issue 4, p. 1188-1194
  • DOI: 10.1149/1.1837571

Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
journal, December 2015


Alkali-Metal Anodes: From Lab to Market
journal, October 2019