DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Imaging Andreev Reflection in Graphene

Abstract

Coherent charge transport along ballistic paths can be introduced into graphene by Andreev reflection, for which an electron reflects from a superconducting contact as a hole, while a Cooper pair is transmitted. We use here a liquid-helium cooled scanning gate microscope (SGM) to image Andreev reflection in graphene in the magnetic focusing regime, where carriers move along cyclotron orbits between contacts. Images of flow are obtained by deflecting carrier paths and displaying the resulting change in conductance. When electrons enter the the superconductor, Andreev-reflected holes leave for the collecting contact. To test the findings, we destroy Andreev reflection with a large current and by heating above the critical temperature. In both cases, the reflected carriers change from holes to electrons.

Authors:
 [1];  [2];  [3];  [3];  [4]; ORCiD logo [4]
  1. Harvard Univ., Cambridge, MA (United States); Slippery Rock Univ., PA (United States)
  2. Harvard Univ., Cambridge, MA (United States); Pohang Univ. of Science and Technology (POSTECH) (Korea, Republic of)
  3. National Inst. for Materials Science (NIMS), Tsukuba (Japan)
  4. Harvard Univ., Cambridge, MA (United States)
Publication Date:
Research Org.:
Harvard Univ., Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1631752
Grant/Contract Number:  
FG02-07ER46422; SC0012260
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 20; Journal Issue: 7; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; graphene; Andreev reflection; ballistic transport; scanning gate microscope

Citation Formats

Bhandari, Sagar, Lee, Gil-Ho, Watanabe, Kenji, Taniguchi, Takashi, Kim, Philip, and Westervelt, Robert M. Imaging Andreev Reflection in Graphene. United States: N. p., 2020. Web. doi:10.1021/acs.nanolett.0c00903.
Bhandari, Sagar, Lee, Gil-Ho, Watanabe, Kenji, Taniguchi, Takashi, Kim, Philip, & Westervelt, Robert M. Imaging Andreev Reflection in Graphene. United States. https://doi.org/10.1021/acs.nanolett.0c00903
Bhandari, Sagar, Lee, Gil-Ho, Watanabe, Kenji, Taniguchi, Takashi, Kim, Philip, and Westervelt, Robert M. Tue . "Imaging Andreev Reflection in Graphene". United States. https://doi.org/10.1021/acs.nanolett.0c00903. https://www.osti.gov/servlets/purl/1631752.
@article{osti_1631752,
title = {Imaging Andreev Reflection in Graphene},
author = {Bhandari, Sagar and Lee, Gil-Ho and Watanabe, Kenji and Taniguchi, Takashi and Kim, Philip and Westervelt, Robert M},
abstractNote = {Coherent charge transport along ballistic paths can be introduced into graphene by Andreev reflection, for which an electron reflects from a superconducting contact as a hole, while a Cooper pair is transmitted. We use here a liquid-helium cooled scanning gate microscope (SGM) to image Andreev reflection in graphene in the magnetic focusing regime, where carriers move along cyclotron orbits between contacts. Images of flow are obtained by deflecting carrier paths and displaying the resulting change in conductance. When electrons enter the the superconductor, Andreev-reflected holes leave for the collecting contact. To test the findings, we destroy Andreev reflection with a large current and by heating above the critical temperature. In both cases, the reflected carriers change from holes to electrons.},
doi = {10.1021/acs.nanolett.0c00903},
journal = {Nano Letters},
number = 7,
volume = 20,
place = {United States},
year = {Tue Jun 02 00:00:00 EDT 2020},
month = {Tue Jun 02 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Imaging Transport Resonances in the Quantum Hall Effect
journal, September 2005


Inducing superconducting correlation in quantum Hall edge states
journal, April 2017

  • Lee, Gil-Ho; Huang, Ko-Fan; Efetov, Dmitri K.
  • Nature Physics, Vol. 13, Issue 7
  • DOI: 10.1038/nphys4084

Scanned potential microscopy of edge and bulk currents in the quantum Hall regime
journal, February 1999

  • McCormick, Kent L.; Woodside, Michael T.; Huang, Mike
  • Physical Review B, Vol. 59, Issue 7
  • DOI: 10.1103/PhysRevB.59.4654

Ultimately short ballistic vertical graphene Josephson junctions
journal, January 2015

  • Lee, Gil-Ho; Kim, Sol; Jhi, Seung-Hoon
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7181

Subsurface charge accumulation imaging of a quantum Hall liquid
journal, March 1998

  • Tessmer, S. H.; Glicofridis, P. I.; Ashoori, R. C.
  • Nature, Vol. 392, Issue 6671
  • DOI: 10.1038/32112

Imaging magnetic focusing of coherent electron waves
journal, June 2007

  • Aidala, Katherine E.; Parrott, Robert E.; Kramer, Tobias
  • Nature Physics, Vol. 3, Issue 7
  • DOI: 10.1038/nphys628

Colloquium : Andreev reflection and Klein tunneling in graphene
journal, October 2008


Imaging cyclotron orbits and scattering sites in a high-mobility two-dimensional electron gas
journal, August 2000


Spatially Resolved Manipulation of Single Electrons in Quantum Dots Using a Scanned Probe
journal, November 2004


Specular Andreev Reflection in Graphene
journal, August 2006


Ballistic-like supercurrent in suspended graphene Josephson weak links
journal, November 2013

  • Mizuno, Naomi; Nielsen, Bent; Du, Xu
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3716

Ballistic Josephson junctions in edge-contacted graphene
journal, July 2015


Supercurrent in the quantum Hall regime
journal, May 2016


Spatially resolved edge currents and guided-wave electronic states in graphene
journal, November 2015

  • Allen, M. T.; Shtanko, O.; Fulga, I. C.
  • Nature Physics, Vol. 12, Issue 2
  • DOI: 10.1038/nphys3534

Imaging Cyclotron Orbits of Electrons in Graphene
journal, February 2016


Electrical imaging of the quantum Hall state
journal, June 1999


Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene
journal, December 2015

  • Ben Shalom, M.; Zhu, M. J.; Fal’ko, V. I.
  • Nature Physics, Vol. 12, Issue 4
  • DOI: 10.1038/nphys3592

Bipolar supercurrent in graphene
journal, March 2007

  • Heersche, Hubert B.; Jarillo-Herrero, Pablo; Oostinga, Jeroen B.
  • Nature, Vol. 446, Issue 7131
  • DOI: 10.1038/nature05555

Imaging Coherent Electron Flow from a Quantum Point Contact
journal, September 2000


Unexpected features of branched flow through high-mobility two-dimensional electron gases
journal, November 2007

  • Jura, M. P.; Topinka, M. A.; Urban, L.
  • Nature Physics, Vol. 3, Issue 12
  • DOI: 10.1038/nphys756

The rise of graphene
journal, March 2007

  • Geim, A. K.; Novoselov, K. S.
  • Nature Materials, Vol. 6, Issue 3, p. 183-191
  • DOI: 10.1038/nmat1849

Boron nitride substrates for high-quality graphene electronics
journal, August 2010

  • Dean, C. R.; Young, A. F.; Meric, I.
  • Nature Nanotechnology, Vol. 5, Issue 10, p. 722-726
  • DOI: 10.1038/nnano.2010.172

Imaging Electron Interferometer
journal, April 2005


Imaging electron flow from collimating contacts in graphene
journal, March 2018


Specular interband Andreev reflections at van der Waals interfaces between graphene and NbSe2
journal, December 2015

  • Efetov, D. K.; Wang, L.; Handschin, C.
  • Nature Physics, Vol. 12, Issue 4
  • DOI: 10.1038/nphys3583