DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 3D Cell-centered hydrodynamics with subscale closure model and multi-material remap

Abstract

We extend a higher-order finite volume cell-centered hydrodynamic (CCH) formulation to include an interface-aware subscale closure model and a multi-material remap for simulating 3D compressible hydrodynamic problems within an arbitrary Lagrangian-Eulerian (ALE) framework. This CCH formulation involves a multidirectional approximate Riemann solution using quadratic polynomial reconstructions of the stress tensor and the velocity. At the subscale level, we determine pair-wise material interactions by solving a distinct approximate Riemann problem at the common interface, using the volume of fluids (VOF) method to find the interface. Material interactions are constrained to ensure smooth pressure equilibration among materials. The accuracy and robustness of the ALE method is demonstrated by simulating a suite of 3D Cartesian multi-material problems covering both gas and solid dynamics, where each test case has two or more materials.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Atomic Weapons Establishment (United Kingdom)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA), Office of Naval Reactors
OSTI Identifier:
1631570
Alternate Identifier(s):
OSTI ID: 1702486
Report Number(s):
LA-UR-19-32615
Journal ID: ISSN 0045-7930; TRN: US2200978
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Computers and Fluids
Additional Journal Information:
Journal Volume: 207; Journal Issue: C; Journal ID: ISSN 0045-7930
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; Cell-centered hydrodynamics (CCH); Closure model; ALE method; Gas and solid dynamics

Citation Formats

Chiravalle, Vincent P., Barlow, Andrew, and Morgan, Nathaniel Ray. 3D Cell-centered hydrodynamics with subscale closure model and multi-material remap. United States: N. p., 2020. Web. doi:10.1016/j.compfluid.2020.104592.
Chiravalle, Vincent P., Barlow, Andrew, & Morgan, Nathaniel Ray. 3D Cell-centered hydrodynamics with subscale closure model and multi-material remap. United States. https://doi.org/10.1016/j.compfluid.2020.104592
Chiravalle, Vincent P., Barlow, Andrew, and Morgan, Nathaniel Ray. Tue . "3D Cell-centered hydrodynamics with subscale closure model and multi-material remap". United States. https://doi.org/10.1016/j.compfluid.2020.104592. https://www.osti.gov/servlets/purl/1631570.
@article{osti_1631570,
title = {3D Cell-centered hydrodynamics with subscale closure model and multi-material remap},
author = {Chiravalle, Vincent P. and Barlow, Andrew and Morgan, Nathaniel Ray},
abstractNote = {We extend a higher-order finite volume cell-centered hydrodynamic (CCH) formulation to include an interface-aware subscale closure model and a multi-material remap for simulating 3D compressible hydrodynamic problems within an arbitrary Lagrangian-Eulerian (ALE) framework. This CCH formulation involves a multidirectional approximate Riemann solution using quadratic polynomial reconstructions of the stress tensor and the velocity. At the subscale level, we determine pair-wise material interactions by solving a distinct approximate Riemann problem at the common interface, using the volume of fluids (VOF) method to find the interface. Material interactions are constrained to ensure smooth pressure equilibration among materials. The accuracy and robustness of the ALE method is demonstrated by simulating a suite of 3D Cartesian multi-material problems covering both gas and solid dynamics, where each test case has two or more materials.},
doi = {10.1016/j.compfluid.2020.104592},
journal = {Computers and Fluids},
number = C,
volume = 207,
place = {United States},
year = {Tue May 26 00:00:00 EDT 2020},
month = {Tue May 26 00:00:00 EDT 2020}
}

Journal Article:

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Reducing spurious mesh motion in Lagrangian finite volume and discontinuous Galerkin hydrodynamic methods
journal, November 2018

  • Morgan, Nathaniel R.; Liu, Xiaodong; Burton, Donald E.
  • Journal of Computational Physics, Vol. 372
  • DOI: 10.1016/j.jcp.2018.06.008

Constrained optimization framework for interface-aware sub-scale dynamics models for voids closure in Lagrangian hydrodynamics
journal, October 2018


A 3D Lagrangian cell-centered hydrodynamic method with higher-order reconstructions for gas and solid dynamics
journal, July 2019

  • Chiravalle, Vincent P.; Morgan, Nathaniel R.
  • Computers & Mathematics with Applications, Vol. 78, Issue 2
  • DOI: 10.1016/j.camwa.2018.06.011

A Lagrangian staggered grid Godunov-like approach for hydrodynamics
journal, February 2014

  • Morgan, Nathaniel R.; Lipnikov, Konstantin N.; Burton, Donald E.
  • Journal of Computational Physics, Vol. 259
  • DOI: 10.1016/j.jcp.2013.12.013

A Compatible, Energy and Symmetry Preserving Lagrangian Hydrodynamics Algorithm in Three-Dimensional Cartesian Geometry
journal, January 2000

  • Caramana, E. J.; Rousculp, C. L.; Burton, D. E.
  • Journal of Computational Physics, Vol. 157, Issue 1
  • DOI: 10.1006/jcph.1999.6368

Computational methods in Lagrangian and Eulerian hydrocodes
journal, September 1992


An efficient, accurate, simple ale method for nonlinear finite element programs
journal, March 1989


A comparative study of interface reconstruction methods for multi-material ALE simulations
journal, April 2010

  • Kucharik, Milan; Garimella, Rao V.; Schofield, Samuel P.
  • Journal of Computational Physics, Vol. 229, Issue 7
  • DOI: 10.1016/j.jcp.2009.07.009

A high-order Lagrangian discontinuous Galerkin hydrodynamic method for quadratic cells using a subcell mesh stabilization scheme
journal, June 2019

  • Liu, Xiaodong; Morgan, Nathaniel R.; Burton, Donald E.
  • Journal of Computational Physics, Vol. 386
  • DOI: 10.1016/j.jcp.2019.02.008

3D staggered Lagrangian hydrodynamics scheme with cell-centered Riemann solver-based artificial viscosity: 3D LAGRANGIAN HYDRO SCHEME WITH RIEMANN SOLVER ARTIFICIAL VISCOSITY
journal, September 2012

  • Loubère, Raphaël; Maire, Pierre-Henri; Váchal, Pavel
  • International Journal for Numerical Methods in Fluids, Vol. 72, Issue 1
  • DOI: 10.1002/fld.3730

A compatible finite element multi-material ALE hydrodynamics algorithm
journal, January 2008

  • Barlow, A. J.
  • International Journal for Numerical Methods in Fluids, Vol. 56, Issue 8
  • DOI: 10.1002/fld.1593

Closure models for multimaterial cells in arbitrary Lagrangian–Eulerian hydrocodes
journal, January 2008

  • Shashkov, M.
  • International Journal for Numerical Methods in Fluids, Vol. 56, Issue 8
  • DOI: 10.1002/fld.1574

A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction
journal, August 2010

  • Galera, Stéphane; Maire, Pierre-Henri; Breil, Jérôme
  • Journal of Computational Physics, Vol. 229, Issue 16
  • DOI: 10.1016/j.jcp.2010.04.019

A point-centered arbitrary Lagrangian Eulerian hydrodynamic approach for tetrahedral meshes
journal, June 2015

  • Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.
  • Journal of Computational Physics, Vol. 290
  • DOI: 10.1016/j.jcp.2015.02.024

A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems
journal, January 2007

  • Maire, Pierre-Henri; Abgrall, Rémi; Breil, Jérôme
  • SIAM Journal on Scientific Computing, Vol. 29, Issue 4
  • DOI: 10.1137/050633019

Constrained optimization framework for interface-aware sub-scale dynamics discrete closure model for multimaterial cells in Lagrangian cell-centered hydrodynamics
journal, July 2019

  • Barlow, Andrew; Morgan, Nathaniel; Shashkov, Mikhail
  • Computers & Mathematics with Applications, Vol. 78, Issue 2
  • DOI: 10.1016/j.camwa.2018.06.015

An arbitrary Lagrangian–Eulerian method with adaptive mesh refinement for the solution of the Euler equations
journal, September 2004

  • Anderson, R. W.; Elliott, N. S.; Pember, R. B.
  • Journal of Computational Physics, Vol. 199, Issue 2
  • DOI: 10.1016/j.jcp.2004.02.021

Multi-material pressure relaxation methods for Lagrangian hydrodynamics
journal, August 2013


Fully multidimensional flux-corrected transport algorithms for fluids
journal, June 1979


A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes
journal, April 2009


Multi-material ALE computation in inertial confinement fusion code CHIC
journal, July 2011


A cell-centered Lagrangian Godunov-like method for solid dynamics
journal, August 2013


Local Error Analysis and Comparison of the Swept- and Intersection-Based Remapping Methods
journal, February 2017

  • Klima, Matej; Kucharik, Milan; Shashkov, Mikhail
  • Communications in Computational Physics, Vol. 21, Issue 2
  • DOI: 10.4208/cicp.OA-2015-0021

Development of a sub-scale dynamics model for pressure relaxation of multi-material cells in Lagrangian hydrodynamics
journal, January 2010


A 3D finite element ALE method using an approximate Riemann solution: 3D FINITE ELEMENT ALE METHOD
journal, August 2016

  • Chiravalle, V. P.; Morgan, N. R.
  • International Journal for Numerical Methods in Fluids, Vol. 83, Issue 8
  • DOI: 10.1002/fld.4284

A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids
journal, November 2014

  • Vilar, François; Maire, Pierre-Henri; Abgrall, Rémi
  • Journal of Computational Physics, Vol. 276
  • DOI: 10.1016/j.jcp.2014.07.030

Arbitrary Lagrangian–Eulerian methods for modeling high-speed compressible multimaterial flows
journal, October 2016

  • Barlow, Andrew J.; Maire, Pierre-Henri; Rider, William J.
  • Journal of Computational Physics, Vol. 322
  • DOI: 10.1016/j.jcp.2016.07.001

A comparative study of various pressure relaxation closure models for one-dimensional two-material Lagrangian hydrodynamics
journal, May 2010

  • Kamm, J. R.; Shashkov, M. J.; Fung, J.
  • International Journal for Numerical Methods in Fluids, Vol. 65, Issue 11-12
  • DOI: 10.1002/fld.2354

An approach for treating contact surfaces in Lagrangian cell-centered hydrodynamics
journal, October 2013

  • Morgan, Nathaniel R.; Kenamond, Mark A.; Burton, Donald E.
  • Journal of Computational Physics, Vol. 250
  • DOI: 10.1016/j.jcp.2013.05.015

A second-order cell-centered Lagrangian ADER-MOOD finite volume scheme on multidimensional unstructured meshes for hydrodynamics
journal, April 2018

  • Boscheri, Walter; Dumbser, Michael; Loubère, Raphaël
  • Journal of Computational Physics, Vol. 358
  • DOI: 10.1016/j.jcp.2017.12.040

A higher-order Lagrangian discontinuous Galerkin hydrodynamic method for solid dynamics
journal, August 2019

  • Lieberman, Evan J.; Liu, Xiaodong; Morgan, Nathaniel R.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 353
  • DOI: 10.1016/j.cma.2019.05.006

A 3D finite volume scheme for solving the updated Lagrangian form of hyperelasticity: A 3D finite volume scheme for solving the updated Lagrangian form of hyperelasticity
journal, September 2016

  • Georges, G.; Breil, J.; Maire, P. -H.
  • International Journal for Numerical Methods in Fluids, Vol. 84, Issue 1
  • DOI: 10.1002/fld.4336

Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems
journal, October 2005

  • Després, Bruno; Mazeran, Constant
  • Archive for Rational Mechanics and Analysis, Vol. 178, Issue 3
  • DOI: 10.1007/s00205-005-0375-4

Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme
journal, December 2010


Slope limiting for discontinuous Galerkin approximations with a possibly non-orthogonal Taylor basis: SLOPE LIMITING FOR DG APPROXIMATIONS
journal, September 2012

  • Kuzmin, Dmitri
  • International Journal for Numerical Methods in Fluids, Vol. 71, Issue 9
  • DOI: 10.1002/fld.3707