DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Regulating the Hidden Solvation‐Ion‐Exchange in Concentrated Electrolytes for Stable and Safe Lithium Metal Batteries

Abstract

Lithium-sulfur batteries are attractive for automobile and grid applications due to their high theoretical energy density and the abundance of sulfur. Despite the significant progress in cathode development, lithium metal degradation and the polysulfide shuttle remain two critical challenges in the practical application of Li-S batteries. Development of advanced electrolytes has become a promising strategy to simultaneously suppress lithium dendrite formation and prevent polysulfide dissolution. Here, a new class of concentrated siloxane-based electrolytes, demonstrating significantly improved performance over the widely investigated ether-based electrolytes are reported in terms of stabilizing the sulfur cathode and Li metal anode as well as minimizing flammability. Through a combination of experimental and computational investigation, it is found that siloxane solvents can effectively regulate a hidden solvation-ion-exchange process in the concentrated electrolytes that results from the interactions between cations/anions (e.g., Li+, TFSI-, and S2-) and solvents. As a result, it could invoke a quasi-solid-solid lithiation and enable reversible Li plating/stripping and robust solid-electrolyte interphase chemistries. The solvation-ion-exchange process in the concentrated electrolytes is a key factor in understanding and designing electrolytes for other high-energy lithium metal batteries.

Authors:
 [1];  [2];  [3];  [4];  [3];  [5];  [6];  [7];  [6];  [6];  [8];  [8];  [8];  [9]; ORCiD logo [10];  [9]
  1. Department of Chemical EngineeringUniversity of Illinois at Chicago Chicago IL 60607 USA, Materials Science DivisionArgonne National Laboratory Lemont IL 60439 USA
  2. Chemical Sciences and Engineering DivisionArgonne National Laboratory 9700 S Cass Avenue Lemont IL 60439 USA, Department of ChemistryVirginia Tech 900 West Campus Drive Blacksburg VA 24061 USA
  3. Institute of Non‐Ferrous Metals Division in Poznan Central Laboratory of Batteries and Cells Forteczna 12 Poznan 61‐362 Poland
  4. College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241000 P. R. China
  5. State Key Laboratory of Heavy Oil ProcessingInstitute of New EnergyChina University of Petroleum‐Beijing Beijing 102249 P. R. China
  6. X‐ray Science DivisionArgonne National Laboratory 9700 South Cass Avenue Lemont IL 60439 USA
  7. Poznan University of Technology Pl. Marii Sklodowskiej‐Curie 5 Poznan 60‐965 Poland
  8. Department of ChemistryCollege of ScienceUniversity of Jeddah P.O. 80327 Jeddah 21589 Saudi Arabia
  9. Chemical Sciences and Engineering DivisionArgonne National Laboratory 9700 S Cass Avenue Lemont IL 60439 USA
  10. Chemical Sciences and Engineering DivisionArgonne National Laboratory 9700 S Cass Avenue Lemont IL 60439 USA, Materials Science and EngineeringStanford University Stanford CA 94305 USA, IRMCImam Abdulrahman Bin Faisal University (IAU) Dammam 34212 Saudi Arabia
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Natural Science Foundation of China (NSFC); University of Jeddah; European Commission (EC); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office - Battery Materials Research (BMR) Program; European Research Council (ERC); Polish Ministry of Science and Education
OSTI Identifier:
1631482
Alternate Identifier(s):
OSTI ID: 1631483; OSTI ID: 1658598
Grant/Contract Number:  
AC02‐06CH11357; AC02-06CH11357; 3787/E‐138/S/2017
Resource Type:
Published Article
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Name: Advanced Energy Materials Journal Volume: 10 Journal Issue: 25; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
Germany
Language:
English
Subject:
25 ENERGY STORAGE; Concentrated electrolytes; lithium metal batteries; siloxanes; solvation-ion-exchange; sulfur

Citation Formats

Amine, Rachid, Liu, Jianzhao, Acznik, Ilona, Sheng, Tian, Lota, Katarzyna, Sun, Hui, Sun, Cheng‐Jun, Fic, Krzysztof, Zuo, Xiaobing, Ren, Yang, EI‐Hady, Deia Abd, Alshitari, Wael, Al‐Bogami, Abdullah S., Chen, Zonghai, Amine, Khalil, and Xu, Gui‐Liang. Regulating the Hidden Solvation‐Ion‐Exchange in Concentrated Electrolytes for Stable and Safe Lithium Metal Batteries. Germany: N. p., 2020. Web. doi:10.1002/aenm.202000901.
Amine, Rachid, Liu, Jianzhao, Acznik, Ilona, Sheng, Tian, Lota, Katarzyna, Sun, Hui, Sun, Cheng‐Jun, Fic, Krzysztof, Zuo, Xiaobing, Ren, Yang, EI‐Hady, Deia Abd, Alshitari, Wael, Al‐Bogami, Abdullah S., Chen, Zonghai, Amine, Khalil, & Xu, Gui‐Liang. Regulating the Hidden Solvation‐Ion‐Exchange in Concentrated Electrolytes for Stable and Safe Lithium Metal Batteries. Germany. https://doi.org/10.1002/aenm.202000901
Amine, Rachid, Liu, Jianzhao, Acznik, Ilona, Sheng, Tian, Lota, Katarzyna, Sun, Hui, Sun, Cheng‐Jun, Fic, Krzysztof, Zuo, Xiaobing, Ren, Yang, EI‐Hady, Deia Abd, Alshitari, Wael, Al‐Bogami, Abdullah S., Chen, Zonghai, Amine, Khalil, and Xu, Gui‐Liang. Tue . "Regulating the Hidden Solvation‐Ion‐Exchange in Concentrated Electrolytes for Stable and Safe Lithium Metal Batteries". Germany. https://doi.org/10.1002/aenm.202000901.
@article{osti_1631482,
title = {Regulating the Hidden Solvation‐Ion‐Exchange in Concentrated Electrolytes for Stable and Safe Lithium Metal Batteries},
author = {Amine, Rachid and Liu, Jianzhao and Acznik, Ilona and Sheng, Tian and Lota, Katarzyna and Sun, Hui and Sun, Cheng‐Jun and Fic, Krzysztof and Zuo, Xiaobing and Ren, Yang and EI‐Hady, Deia Abd and Alshitari, Wael and Al‐Bogami, Abdullah S. and Chen, Zonghai and Amine, Khalil and Xu, Gui‐Liang},
abstractNote = {Lithium-sulfur batteries are attractive for automobile and grid applications due to their high theoretical energy density and the abundance of sulfur. Despite the significant progress in cathode development, lithium metal degradation and the polysulfide shuttle remain two critical challenges in the practical application of Li-S batteries. Development of advanced electrolytes has become a promising strategy to simultaneously suppress lithium dendrite formation and prevent polysulfide dissolution. Here, a new class of concentrated siloxane-based electrolytes, demonstrating significantly improved performance over the widely investigated ether-based electrolytes are reported in terms of stabilizing the sulfur cathode and Li metal anode as well as minimizing flammability. Through a combination of experimental and computational investigation, it is found that siloxane solvents can effectively regulate a hidden solvation-ion-exchange process in the concentrated electrolytes that results from the interactions between cations/anions (e.g., Li+, TFSI-, and S2-) and solvents. As a result, it could invoke a quasi-solid-solid lithiation and enable reversible Li plating/stripping and robust solid-electrolyte interphase chemistries. The solvation-ion-exchange process in the concentrated electrolytes is a key factor in understanding and designing electrolytes for other high-energy lithium metal batteries.},
doi = {10.1002/aenm.202000901},
journal = {Advanced Energy Materials},
number = 25,
volume = 10,
place = {Germany},
year = {Tue Jun 02 00:00:00 EDT 2020},
month = {Tue Jun 02 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/aenm.202000901

Citation Metrics:
Cited by: 56 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

In Situ Formation of Protective Coatings on Sulfur Cathodes in Lithium Batteries with LiFSI-Based Organic Electrolytes
journal, December 2014

  • Kim, Hyea; Wu, Feixiang; Lee, Jung Tae
  • Advanced Energy Materials, Vol. 5, Issue 6
  • DOI: 10.1002/aenm.201401792

A facile approach for the synthesis of monolithic hierarchical porous carbons – high performance materials for amine based CO2 capture and supercapacitor electrode
journal, January 2013

  • Estevez, Luis; Dua, Rubal; Bhandari, Nidhi
  • Energy & Environmental Science, Vol. 6, Issue 6
  • DOI: 10.1039/c3ee40549d

Review—Superconcentrated Electrolytes for Lithium Batteries
journal, January 2015

  • Yamada, Yuki; Yamada, Atsuo
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0041514jes

Projector augmented-wave method
journal, December 1994


Superconcentrated electrolytes for a high-voltage lithium-ion battery
journal, June 2016

  • Wang, Jianhui; Yamada, Yuki; Sodeyama, Keitaro
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12032

Sulfur/polyacrylonitrile/carbon multi-composites as cathode materials for lithium/sulfur battery in the concentrated electrolyte
journal, January 2014

  • Zhang, Y. Z.; Liu, S.; Li, G. C.
  • J. Mater. Chem. A, Vol. 2, Issue 13
  • DOI: 10.1039/C3TA14914E

New Approaches for High Energy Density Lithium–Sulfur Battery Cathodes
journal, June 2012

  • Evers, Scott; Nazar, Linda F.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar3001348

Solid-State Lithium/Selenium-Sulfur Chemistry Enabled via a Robust Solid-Electrolyte Interphase
journal, November 2018


Structural Design of Lithium–Sulfur Batteries: From Fundamental Research to Practical Application
journal, June 2018


Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Selenium and Selenium–Sulfur Chemistry for Rechargeable Lithium Batteries: Interplay of Cathode Structures, Electrolytes, and Interfaces
journal, February 2017


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Recent Advances in Electrolytes for Lithium-Sulfur Batteries
journal, April 2015

  • Zhang, Shiguo; Ueno, Kazuhide; Dokko, Kaoru
  • Advanced Energy Materials, Vol. 5, Issue 16
  • DOI: 10.1002/aenm.201500117

Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications
journal, March 2017

  • Zheng, Jianming; Lochala, Joshua A.; Kwok, Alexander
  • Advanced Science, Vol. 4, Issue 8
  • DOI: 10.1002/advs.201700032

An Intrinsic Flame-Retardant Organic Electrolyte for Safe Lithium-Sulfur Batteries
journal, December 2018

  • Yang, Huijun; Guo, Cheng; Chen, Jiahang
  • Angewandte Chemie International Edition, Vol. 58, Issue 3
  • DOI: 10.1002/anie.201811291

The Significance of Elemental Sulfur Dissolution in Liquid Electrolyte Lithium Sulfur Batteries
journal, October 2016

  • Harks, Peter Paul R. M. L.; Robledo, Carla B.; Verhallen, Tomas W.
  • Advanced Energy Materials, Vol. 7, Issue 3
  • DOI: 10.1002/aenm.201601635

Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes
journal, January 2018


Communication—Microscopic View of the Ethylene Carbonate Based Lithium-Ion Battery Electrolyte by X-ray Scattering
journal, January 2019

  • Feng, Zhange; Sarnello, Erik; Li, Tao
  • Journal of The Electrochemical Society, Vol. 166, Issue 2
  • DOI: 10.1149/2.0971816jes

Concentrated Electrolytes for Enhanced Stability of Al-Alloy Negative Electrodes in Li-Ion Batteries
journal, January 2019

  • Chan, Averey K.; Tatara, Ryoichi; Feng, Shuting
  • Journal of The Electrochemical Society, Vol. 166, Issue 10
  • DOI: 10.1149/2.0581910jes

High-Power Li-Metal Anode Enabled by Metal-Organic Framework Modified Electrolyte
journal, October 2018


Kinetic Study of Parasitic Reactions in Lithium-Ion Batteries: A Case Study on LiNi 0.6 Mn 0.2 Co 0.2 O 2
journal, January 2016

  • Zeng, Xiaoqiao; Xu, Gui-Liang; Li, Yan
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 5
  • DOI: 10.1021/acsami.5b11800

Highly Solvating Electrolytes for Lithium–Sulfur Batteries
journal, December 2018

  • Gupta, Abhay; Bhargav, Amruth; Manthiram, Arumugam
  • Advanced Energy Materials, Vol. 9, Issue 6
  • DOI: 10.1002/aenm.201803096

Rechargeable Lithium–Sulfur Batteries
journal, July 2014

  • Manthiram, Arumugam; Fu, Yongzhu; Chung, Sheng-Heng
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500062v

Efficient Polysulfide Chemisorption in Covalent Organic Frameworks for High-Performance Lithium-Sulfur Batteries
journal, September 2016

  • Ghazi, Zahid Ali; Zhu, Lingyun; Wang, Han
  • Advanced Energy Materials, Vol. 6, Issue 24
  • DOI: 10.1002/aenm.201601250

(De)Lithiation Mechanism of Li/SeS x ( x = 0–7) Batteries Determined by in Situ Synchrotron X-ray Diffraction and X-ray Absorption Spectroscopy
journal, May 2013

  • Cui, Yanjie; Abouimrane, Ali; Lu, Jun
  • Journal of the American Chemical Society, Vol. 135, Issue 21
  • DOI: 10.1021/ja402597g

Ab initiomolecular dynamics for liquid metals
journal, January 1993


Designing high-energy lithium–sulfur batteries
journal, January 2016

  • Seh, Zhi Wei; Sun, Yongming; Zhang, Qianfan
  • Chemical Society Reviews, Vol. 45, Issue 20
  • DOI: 10.1039/C5CS00410A

Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-ray diffraction
journal, May 2017


A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes
journal, January 2019

  • Alvarado, Judith; Schroeder, Marshall A.; Pollard, Travis P.
  • Energy & Environmental Science, Vol. 12, Issue 2
  • DOI: 10.1039/C8EE02601G

Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth
journal, September 2017


Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes
journal, September 2016


Incorporating Sulfur Inside the Pores of Carbons for Advanced Lithium–Sulfur Batteries: An Electrolysis Approach
journal, December 2015


Manipulating surface reactions in lithium–sulphur batteries using hybrid anode structures
journal, January 2014

  • Huang, Cheng; Xiao, Jie; Shao, Yuyan
  • Nature Communications, Vol. 5, Issue 1, Article No. 3015
  • DOI: 10.1038/ncomms4015

Flammability of Li-Ion Battery Electrolytes: Flash Point and Self-Extinguishing Time Measurements
journal, January 2015

  • Hess, Steffen; Wohlfahrt-Mehrens, Margret; Wachtler, Mario
  • Journal of The Electrochemical Society, Vol. 162, Issue 2
  • DOI: 10.1149/2.0121502jes

Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries
journal, August 2018


A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
journal, May 2009

  • Ji, Xiulei; Lee, Kyu Tae; Nazar, Linda F.
  • Nature Materials, Vol. 8, Issue 6, p. 500-506
  • DOI: 10.1038/nmat2460

Kinetic Investigation of the Solvation of Lithium Salts in Siloxanes
journal, February 2008

  • Chen, Zonghai; Wang, H. H.; Vissers, D. R.
  • The Journal of Physical Chemistry C, Vol. 112, Issue 6
  • DOI: 10.1021/jp076744h

Strong Lithium Polysulfide Chemisorption on Electroactive Sites of Nitrogen-Doped Carbon Composites For High-Performance Lithium-Sulfur Battery Cathodes
journal, February 2015

  • Song, Jiangxuan; Gordin, Mikhail L.; Xu, Terrence
  • Angewandte Chemie International Edition, Vol. 54, Issue 14
  • DOI: 10.1002/anie.201411109

A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

Inside Cover: Synergistic N‐Heterocyclic Carbene/Palladium‐Catalyzed Umpolung 1,4‐Addition of Aryl Iodides to Enals (Angew. Chem. Int. Ed. 1/2020)
journal, January 2020

  • Yang, Wenjun; Ling, Bo; Hu, Bowen
  • Angewandte Chemie International Edition, Vol. 59, Issue 1
  • DOI: 10.1002/anie.201914768

Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions
journal, January 2019


High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362