skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models

Authors:
ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ; ;
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1631382
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Computer Physics Communications
Additional Journal Information:
Journal Name: Computer Physics Communications Journal Volume: 253 Journal Issue: C; Journal ID: ISSN 0010-4655
Publisher:
Elsevier
Country of Publication:
Netherlands
Language:
English

Citation Formats

Zhang, Yuzhi, Wang, Haidi, Chen, Weijie, Zeng, Jinzhe, Zhang, Linfeng, Wang, Han, and E, Weinan. DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models. Netherlands: N. p., 2020. Web. https://doi.org/10.1016/j.cpc.2020.107206.
Zhang, Yuzhi, Wang, Haidi, Chen, Weijie, Zeng, Jinzhe, Zhang, Linfeng, Wang, Han, & E, Weinan. DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models. Netherlands. https://doi.org/10.1016/j.cpc.2020.107206
Zhang, Yuzhi, Wang, Haidi, Chen, Weijie, Zeng, Jinzhe, Zhang, Linfeng, Wang, Han, and E, Weinan. Sat . "DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models". Netherlands. https://doi.org/10.1016/j.cpc.2020.107206.
@article{osti_1631382,
title = {DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models},
author = {Zhang, Yuzhi and Wang, Haidi and Chen, Weijie and Zeng, Jinzhe and Zhang, Linfeng and Wang, Han and E, Weinan},
abstractNote = {},
doi = {10.1016/j.cpc.2020.107206},
journal = {Computer Physics Communications},
number = C,
volume = 253,
place = {Netherlands},
year = {2020},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1016/j.cpc.2020.107206

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

The weak beam technique as applied to the determination of the stacking-fault energy of copper
journal, December 1971


The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics
journal, January 2018

  • Yao, Kun; Herr, John E.; Toth, David W.
  • Chemical Science, Vol. 9, Issue 8
  • DOI: 10.1039/C7SC04934J

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Temperature Variation of the Elastic Constants of Cubic Elements. I. Copper
journal, May 1955


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Positron trapping in solid and liquid metals
journal, December 1975


First principles phonon calculations in materials science
journal, November 2015


Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Less is more: Sampling chemical space with active learning
journal, June 2018

  • Smith, Justin S.; Nebgen, Ben; Lubbers, Nicholas
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5023802

Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces
journal, April 2007


AiiDA: automated interactive infrastructure and database for computational science
journal, January 2016


i-PI: A Python interface for ab initio path integral molecular dynamics simulations
journal, March 2014

  • Ceriotti, Michele; More, Joshua; Manolopoulos, David E.
  • Computer Physics Communications, Vol. 185, Issue 3
  • DOI: 10.1016/j.cpc.2013.10.027

DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
journal, July 2018


Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
journal, April 2010


An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2
journal, March 2016


SchNetPack: A Deep Learning Toolbox For Atomistic Systems
journal, November 2018

  • Schütt, K. T.; Kessel, P.; Gastegger, M.
  • Journal of Chemical Theory and Computation, Vol. 15, Issue 1
  • DOI: 10.1021/acs.jctc.8b00908

Unified Approach for Molecular Dynamics and Density-Functional Theory
journal, November 1985


Modified embedded-atom potentials for cubic materials and impurities
journal, August 1992


Deep Potential: A General Representation of a Many-Body Potential Energy Surface
journal, January 2018

  • Han, Jiequn; Zhang, Linfeng; Car, Roberto
  • Communications in Computational Physics, Vol. 23, Issue 3
  • DOI: 10.4208/cicp.OA-2017-0213

Error Estimates for Solid-State Density-Functional Theory Predictions: An Overview by Means of the Ground-State Elemental Crystals
journal, October 2013

  • Lejaeghere, K.; Van Speybroeck, V.; Van Oost, G.
  • Critical Reviews in Solid State and Materials Sciences, Vol. 39, Issue 1
  • DOI: 10.1080/10408436.2013.772503

Phonon Frequencies in Copper at 49 and 298°K
journal, December 1967


Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics
journal, April 2018


Active learning of uniformly accurate interatomic potentials for materials simulation
journal, February 2019


Active learning of linearly parametrized interatomic potentials
journal, December 2017


Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


cp2k: atomistic simulations of condensed matter systems
journal, June 2013

  • Hutter, Jürg; Iannuzzi, Marcella; Schiffmann, Florian
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 4, Issue 1
  • DOI: 10.1002/wcms.1159