skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Facile Fabrication of Hierarchical MOF–Metal Nanoparticle Tandem Catalysts for the Synthesis of Bioactive Molecules

Abstract

Multifunctional metal–organic frameworks (MOFs) that possess permanent porosity are promising catalysts in organic transformation. Herein, we report the construction of a hierarchical MOF functionalized with basic aliphatic amine groups and polyvinylpyrrolidone-capped platinum nanoparticles (Pt NPs). The postsynthetic covalent modification of organic ligands increases basic site density in the MOF and simultaneously introduces mesopores to create a hierarchically porous structure. The multifunctional MOF is capable of catalyzing a sequential Knoevenagel condensation–hydrogenation–intramolecular cyclization reaction. The unique selective reduction of the nitro group to intermediate hydroxylamine by Pt NPs supported on MOF followed by intramolecular cyclization with a cyano group affords an excellent yield (up to 92%) to the uncommon quinoline N-oxides over quinolines. The hierarchical MOF and polyvinylpyrrolidone capping agent on Pt NPs synergistically facilitate the enrichment of substrates and thus lead to high activity in the reduction–intramolecular cyclization reaction. The bioactivity assay indicates that the synthesized quinoline N-oxides evidently inhibit the proliferation of lung cancer cells. Finally, our findings demonstrate the feasibility of MOF-catalyzed direct synthesis of bioactive molecules from readily available compounds under mild conditions.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3];  [2]; ORCiD logo [2];  [2];  [2]; ORCiD logo [4]; ORCiD logo [4];  [4]; ORCiD logo [4]; ORCiD logo [5]
  1. Zhejiang Univ., Hangzhou (China); Iowa State Univ., Ames, IA (United States)
  2. Iowa State Univ., Ames, IA (United States)
  3. Ames Lab., Ames, IA (United States)
  4. Zhejiang Univ., Hangzhou (China)
  5. Iowa State Univ., Ames, IA (United States); Ames Lab., Ames, IA (United States)
Publication Date:
Research Org.:
Ames Lab., Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences, and Biosciences Division; National Key R&D Program of China; National Natural Science Foundation of China (NSFC); National Science Foundation (NSF)
OSTI Identifier:
1630734
Report Number(s):
IS-J-10,220
Journal ID: ISSN 1944-8244
Grant/Contract Number:  
AC02-07CH11358; 21722609; 21878266; 2016YFA0202900; CHE-1566445
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 12; Journal Issue: 20; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; tandem reaction; metal-organic frameworks; hierarchical pore; heterogeneous catalysis; bioactivity; quinoline N-oxides

Citation Formats

Chen, Jingwen, Zhang, Biying, Qi, Long, Pei, Yuchen, Nie, Renfeng, Heintz, Patrick, Luan, Xuechen, Bao, Zongbi, Yang, Qiwei, Ren, Qilong, Zhang, Zhiguo, and Huang, Wenyu. Facile Fabrication of Hierarchical MOF–Metal Nanoparticle Tandem Catalysts for the Synthesis of Bioactive Molecules. United States: N. p., 2020. Web. https://doi.org/10.1021/acsami.0c05344.
Chen, Jingwen, Zhang, Biying, Qi, Long, Pei, Yuchen, Nie, Renfeng, Heintz, Patrick, Luan, Xuechen, Bao, Zongbi, Yang, Qiwei, Ren, Qilong, Zhang, Zhiguo, & Huang, Wenyu. Facile Fabrication of Hierarchical MOF–Metal Nanoparticle Tandem Catalysts for the Synthesis of Bioactive Molecules. United States. https://doi.org/10.1021/acsami.0c05344
Chen, Jingwen, Zhang, Biying, Qi, Long, Pei, Yuchen, Nie, Renfeng, Heintz, Patrick, Luan, Xuechen, Bao, Zongbi, Yang, Qiwei, Ren, Qilong, Zhang, Zhiguo, and Huang, Wenyu. Mon . "Facile Fabrication of Hierarchical MOF–Metal Nanoparticle Tandem Catalysts for the Synthesis of Bioactive Molecules". United States. https://doi.org/10.1021/acsami.0c05344. https://www.osti.gov/servlets/purl/1630734.
@article{osti_1630734,
title = {Facile Fabrication of Hierarchical MOF–Metal Nanoparticle Tandem Catalysts for the Synthesis of Bioactive Molecules},
author = {Chen, Jingwen and Zhang, Biying and Qi, Long and Pei, Yuchen and Nie, Renfeng and Heintz, Patrick and Luan, Xuechen and Bao, Zongbi and Yang, Qiwei and Ren, Qilong and Zhang, Zhiguo and Huang, Wenyu},
abstractNote = {Multifunctional metal–organic frameworks (MOFs) that possess permanent porosity are promising catalysts in organic transformation. Herein, we report the construction of a hierarchical MOF functionalized with basic aliphatic amine groups and polyvinylpyrrolidone-capped platinum nanoparticles (Pt NPs). The postsynthetic covalent modification of organic ligands increases basic site density in the MOF and simultaneously introduces mesopores to create a hierarchically porous structure. The multifunctional MOF is capable of catalyzing a sequential Knoevenagel condensation–hydrogenation–intramolecular cyclization reaction. The unique selective reduction of the nitro group to intermediate hydroxylamine by Pt NPs supported on MOF followed by intramolecular cyclization with a cyano group affords an excellent yield (up to 92%) to the uncommon quinoline N-oxides over quinolines. The hierarchical MOF and polyvinylpyrrolidone capping agent on Pt NPs synergistically facilitate the enrichment of substrates and thus lead to high activity in the reduction–intramolecular cyclization reaction. The bioactivity assay indicates that the synthesized quinoline N-oxides evidently inhibit the proliferation of lung cancer cells. Finally, our findings demonstrate the feasibility of MOF-catalyzed direct synthesis of bioactive molecules from readily available compounds under mild conditions.},
doi = {10.1021/acsami.0c05344},
journal = {ACS Applied Materials and Interfaces},
number = 20,
volume = 12,
place = {United States},
year = {2020},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Cascade Reactions in Total Synthesis
journal, November 2006

  • Nicolaou, K. C.; Edmonds, David J.; Bulger, Paul G.
  • Angewandte Chemie International Edition, Vol. 45, Issue 43
  • DOI: 10.1002/anie.200601872

Domino Reactions in Organic Synthesis
journal, January 1996


Structure, Energy, Synergy, TimeThe Fundamentals of Process Intensification
journal, March 2009

  • Van Gerven, Tom; Stankiewicz, Andrzej
  • Industrial & Engineering Chemistry Research, Vol. 48, Issue 5
  • DOI: 10.1021/ie801501y

Concurrent Tandem Catalysis
journal, March 2005

  • Wasilke, Julia-Christina; Obrey, Stephen J.; Baker, R. Tom
  • Chemical Reviews, Vol. 105, Issue 3, p. 1001-1020
  • DOI: 10.1021/cr020018n

Catalysis using multifunctional organosiliceous hybrid materials
journal, January 2013

  • Díaz, Urbano; Brunel, Daniel; Corma, Avelino
  • Chemical Society Reviews, Vol. 42, Issue 9
  • DOI: 10.1039/c2cs35385g

The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Cascade Reactions Catalyzed by Metal Organic Frameworks
journal, July 2014


Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions
journal, January 2017

  • Huang, Yuan-Biao; Liang, Jun; Wang, Xu-Sheng
  • Chemical Society Reviews, Vol. 46, Issue 1
  • DOI: 10.1039/C6CS00250A

Hollow Metal–Organic‐Framework Micro/Nanostructures and their Derivatives: Emerging Multifunctional Materials
journal, July 2018


Metal–organic frameworks as selectivity regulators for hydrogenation reactions
journal, October 2016


Core–Shell Palladium Nanoparticle@Metal–Organic Frameworks as Multifunctional Catalysts for Cascade Reactions
journal, January 2014

  • Zhao, Meiting; Deng, Ke; He, Liangcan
  • Journal of the American Chemical Society, Vol. 136, Issue 5
  • DOI: 10.1021/ja411468e

Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement
journal, January 2014

  • Deria, Pravas; Mondloch, Joseph E.; Karagiaridi, Olga
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00067F

Rational Design, Synthesis, Purification, and Activation of Metal−Organic Framework Materials
journal, August 2010

  • Farha, Omar K.; Hupp, Joseph T.
  • Accounts of Chemical Research, Vol. 43, Issue 8, p. 1166-1175
  • DOI: 10.1021/ar1000617

Selective gas adsorption and separation in metal–organic frameworks
journal, January 2009

  • Li, Jian-Rong; Kuppler, Ryan J.; Zhou, Hong-Cai
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1477-1504
  • DOI: 10.1039/b802426j

Controllable design of tunable nanostructures inside metal–organic frameworks
journal, January 2017

  • Chen, Liyu; Luque, Rafael; Li, Yingwei
  • Chemical Society Reviews, Vol. 46, Issue 15
  • DOI: 10.1039/C6CS00537C

Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis
journal, January 2017

  • Yang, Qihao; Xu, Qiang; Jiang, Hai-Long
  • Chemical Society Reviews, Vol. 46, Issue 15
  • DOI: 10.1039/C6CS00724D

Metal–organic framework materials as catalysts
journal, January 2009

  • Lee, JeongYong; Farha, Omar K.; Roberts, John
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1450-1459
  • DOI: 10.1039/b807080f

State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis
journal, June 2019


Recent progress in the syntheses of mesoporous metal–organic framework materials
journal, August 2018


Metal–organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles
journal, January 2014

  • Dhakshinamoorthy, Amarajothi; Garcia, Hermenegildo
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C3CS60442J

Quinoline, quinazoline and acridonealkaloids
journal, January 2008


Biological evaluation of some quinoline derivatives with different functional groups as anticancer agents: KÖPRÜLÜ et al.
journal, November 2018

  • Köprülü, Tuğba Kul; Ökten, Salih; Tekin, Şaban
  • Journal of Biochemical and Molecular Toxicology, Vol. 33, Issue 3
  • DOI: 10.1002/jbt.22260

The direct C–H alkenylation of quinoline N -oxides as a suitable strategy for the synthesis of promising antiparasitic drugs
journal, January 2020

  • Kouznetsov, Vladimir V.; Vargas Méndez, Leonor Y.; Puerto Galvis, Carlos E.
  • New Journal of Chemistry, Vol. 44, Issue 1
  • DOI: 10.1039/C9NJ05054J

Antifungal activity of 6-quinolinyl N-oxide chalcones against Paracoccidioides
journal, October 2014

  • de Sá, Nívea Pereira; Cisalpino, Patrícia Silva; Tavares, Luciana de Carvalho
  • Journal of Antimicrobial Chemotherapy, Vol. 70, Issue 3
  • DOI: 10.1093/jac/dku427

Synthesis of camphorsulfonamide-based quinoline ligands and their N-oxides: first use in the enantioselective addition of organozinc reagents to aldehydes
journal, November 2008


Magnetic properties and structure of some copper(II) complexes of pyridine and quinoline N-oxides
journal, January 1967

  • Gruber, Sj; Harris, Cm; Kokot, E.
  • Australian Journal of Chemistry, Vol. 20, Issue 11
  • DOI: 10.1071/CH9672403

Synthesis, characterization and luminescence properties of zinc(II) and cadmium(II) pseudohalide complexes derived from quinoline-N-oxide
journal, January 2016


Recent Developments in the Chemistry of Heteroaromatic N-Oxides
journal, January 2015


Regioselective Introduction of Heteroatoms at the C-8 Position of Quinoline N -Oxides: Remote C–H Activation Using N -Oxide as a Stepping Stone
journal, July 2014

  • Hwang, Heejun; Kim, Jinwoo; Jeong, Jisu
  • Journal of the American Chemical Society, Vol. 136, Issue 30
  • DOI: 10.1021/ja5053768

Recent Advances in Catalytic Functionalization of N -Oxide Compounds via CH Bond Activation
journal, June 2014

  • Yan, Guobing; Borah, Arun Jyoti; Yang, Minghua
  • Advanced Synthesis & Catalysis, Vol. 356, Issue 11-12
  • DOI: 10.1002/adsc.201400203

Cobalt( iii ) catalyzed C-8 selective C–H and C–O coupling of quinoline N-oxide with internal alkynes via C–H activation and oxygen atom transfer
journal, January 2016

  • Barsu, Nagaraju; Sen, Malay; Premkumar, J. Richard
  • Chemical Communications, Vol. 52, Issue 7
  • DOI: 10.1039/C5CC08736H

Ru-Catalyzed Deoxygenative Regioselective C8–H Arylation of Quinoline N -Oxides
journal, July 2019

  • Kim, Jinwoo; Kim, Suhyeon; Kim, Dongwook
  • The Journal of Organic Chemistry, Vol. 84, Issue 20
  • DOI: 10.1021/acs.joc.9b01548

Rh(III)-Catalyzed C(8)–H Activation of Quinoline N -Oxides: Regioselective C–Br and C–N Bond Formation
journal, July 2019

  • Dhiman, Ankit Kumar; Gupta, Shiv Shankar; Sharma, Ritika
  • The Journal of Organic Chemistry, Vol. 84, Issue 20
  • DOI: 10.1021/acs.joc.9b01538

Selective Heteroaryl N-Oxidation of Amine-Containing Molecules
journal, March 2018


The m -CPBA–NH 3 (g) System: A Safe and Scalable Alternative for the Manufacture of (Substituted) Pyridine and Quinoline N -Oxides
journal, December 2018

  • Palav, Amey; Misal, Balu; Ernolla, Anilkumar
  • Organic Process Research & Development, Vol. 23, Issue 2
  • DOI: 10.1021/acs.oprd.8b00358

Carbon Nanotube-Ruthenium Hybrids for the Partial Reduction of 2-Nitrochalcones: Easy Access to Quinoline N -Oxides
journal, March 2016


Synthesis of 3-substituted-4-hydroxyquinoline N-oxides from the Baylis–Hillman adducts of o-nitrobenzaldehydes
journal, January 2003


Synthesis of Quinoline N -Oxides by Cobalt-Catalyzed Annulation of Arylnitrones and Alkynes
journal, March 2017

  • Liu, Yue; Wang, Chen; Lv, Ningning
  • Advanced Synthesis & Catalysis, Vol. 359, Issue 8
  • DOI: 10.1002/adsc.201600834

Synthesis of a novel pyrrolo-[3,2-c]quinoline N-oxide by aza-Baylis–Hillman adduct of o-nitrobenzaldehyde
journal, August 2008


Simple synthesis of 4-cyanoquinoline N-oxides
journal, March 2016


The Baylis–Hillman approach to quinoline derivatives
journal, January 2006

  • Familoni, Oluwole B.; Klaas, Phindile J.; Lobb, Kevin A.
  • Org. Biomol. Chem., Vol. 4, Issue 21
  • DOI: 10.1039/B608592J

Metal–Organic Frameworks for Heterogeneous Basic Catalysis
journal, May 2017


Amine-functionalized metal-organic frameworks for the transesterification of triglycerides
journal, January 2014

  • Chen, Jinzhu; Liu, Ruliang; Gao, Hui
  • J. Mater. Chem. A, Vol. 2, Issue 20
  • DOI: 10.1039/C4TA00253A

Modulated Synthesis of Zr-Based Metal-Organic Frameworks: From Nano to Single Crystals
journal, May 2011

  • Schaate, Andreas; Roy, Pascal; Godt, Adelheid
  • Chemistry - A European Journal, Vol. 17, Issue 24
  • DOI: 10.1002/chem.201003211

A facile synthesis of UiO-66, UiO-67 and their derivatives
journal, January 2013

  • Katz, Michael J.; Brown, Zachary J.; Colón, Yamil J.
  • Chemical Communications, Vol. 49, Issue 82
  • DOI: 10.1039/c3cc46105j

Definitive Molecular Level Characterization of Defects in UiO-66 Crystals
journal, August 2015

  • Trickett, Christopher A.; Gagnon, Kevin J.; Lee, Seungkyu
  • Angewandte Chemie International Edition, Vol. 54, Issue 38
  • DOI: 10.1002/anie.201505461

Hierarchical Porous Zr-Based MOFs Synthesized by a Facile Monocarboxylic Acid Etching Strategy
journal, February 2018

  • Yang, Pengfei; Mao, Fangxin; Li, Yongsheng
  • Chemistry - A European Journal, Vol. 24, Issue 12
  • DOI: 10.1002/chem.201705020

Heterometallic metal–organic framework nanocages of high crystallinity: an elongated channel structure formed in situ through metal-ion (M = W or Mo) doping
journal, January 2018

  • Wei, Jinxin; Cheng, Niancai; Liang, Zhiyu
  • Journal of Materials Chemistry A, Vol. 6, Issue 46
  • DOI: 10.1039/C8TA04892D

Large-Scale Synthesis of Monodisperse UiO-66 Crystals with Tunable Sizes and Missing Linker Defects via Acid/Base Co-Modulation
journal, April 2017

  • Zhao, Yajing; Zhang, Qing; Li, Yali
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 17
  • DOI: 10.1021/acsami.7b02887

Pt Nanoclusters Confined within Metal–Organic Framework Cavities for Chemoselective Cinnamaldehyde Hydrogenation
journal, April 2014

  • Guo, Zhiyong; Xiao, Chaoxian; Maligal-Ganesh, Raghu V.
  • ACS Catalysis, Vol. 4, Issue 5, p. 1340-1348
  • DOI: 10.1021/cs400982n

Polymer Infiltration into Metal–Organic Frameworks in Mixed-Matrix Membranes Detected in Situ by NMR
journal, April 2019

  • Duan, Pu; Moreton, Jessica C.; Tavares, Sergio R.
  • Journal of the American Chemical Society, Vol. 141, Issue 18
  • DOI: 10.1021/jacs.9b02789

MOFs as Multifunctional Catalysts: Synthesis of Secondary Arylamines, Quinolines, Pyrroles, and Arylpyrrolidines over Bifunctional MIL-101
journal, January 2013

  • Cirujano, Francisco G.; Leyva-Pérez, Antonio; Corma, Avelino
  • ChemCatChem, Vol. 5, Issue 2
  • DOI: 10.1002/cctc.201200878

Chemoselective synthesis of quinoline N-oxides from 3-(2-nitrophenyl)-3-hydroxypropanones
journal, August 2010

  • Okuma, Kentaro; Seto, Jun-ichi; Nagahora, Noriyoshi
  • Journal of Heterocyclic Chemistry, Vol. 47, Issue 6
  • DOI: 10.1002/jhet.485