skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Controllable thermal expansion and magnetic structure in Er 2 (Fe,Co) 14 B intermetallic compounds

Abstract

The control of thermal expansion is attractive but remains challenging for the studies of negative thermal expansion materials. Here, we report a continuously controllable thermal expansion from negative to positive by means of adjusting the magnetic moment of Fe in Er2(Fe,Co)14B intermetallic compounds. Interestingly, a zero thermal expansion (ZTE) has been achieved in a wide temperature range (ΔT = 355 K), which is larger than most existing ZTE alloys. The spontaneous magnetostriction (ωS) reveals a negative contribution arising from the magneto-volume effect to the controllable thermal expansion. The present study could be suitable for the design of controllable thermal expansion of other alloys related to the magneto-volume effect.

Authors:
 [1];  [1];  [1];  [2];  [3];  [1]; ORCiD logo [1]
  1. Univ. of Science and Technology Beijing (China). Beijing Advanced Innovation Center for Materials Genome Engineering, and Dept. of Physical Chemistry
  2. Zhengzhou Univ. (China). School of Physics and Engineering
  3. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division; National Natural Science Foundation of China (NNSFC); Fundamental Research Funds for the Central Universities; China Postdoctoral Science Foundation
OSTI Identifier:
1630421
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry Frontiers (Online)
Additional Journal Information:
Journal Name: Inorganic Chemistry Frontiers (Online); Journal Volume: 6; Journal Issue: 11; Journal ID: ISSN 2052-1553
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Qiao, Yongqiang, Song, Yuzhu, Xu, Meng, Gao, Qilong, Ren, Yang, Xing, Xianran, and Chen, Jun. Controllable thermal expansion and magnetic structure in Er 2 (Fe,Co) 14 B intermetallic compounds. United States: N. p., 2019. Web. https://doi.org/10.1039/C9QI00819E.
Qiao, Yongqiang, Song, Yuzhu, Xu, Meng, Gao, Qilong, Ren, Yang, Xing, Xianran, & Chen, Jun. Controllable thermal expansion and magnetic structure in Er 2 (Fe,Co) 14 B intermetallic compounds. United States. https://doi.org/10.1039/C9QI00819E
Qiao, Yongqiang, Song, Yuzhu, Xu, Meng, Gao, Qilong, Ren, Yang, Xing, Xianran, and Chen, Jun. Thu . "Controllable thermal expansion and magnetic structure in Er 2 (Fe,Co) 14 B intermetallic compounds". United States. https://doi.org/10.1039/C9QI00819E. https://www.osti.gov/servlets/purl/1630421.
@article{osti_1630421,
title = {Controllable thermal expansion and magnetic structure in Er 2 (Fe,Co) 14 B intermetallic compounds},
author = {Qiao, Yongqiang and Song, Yuzhu and Xu, Meng and Gao, Qilong and Ren, Yang and Xing, Xianran and Chen, Jun},
abstractNote = {The control of thermal expansion is attractive but remains challenging for the studies of negative thermal expansion materials. Here, we report a continuously controllable thermal expansion from negative to positive by means of adjusting the magnetic moment of Fe in Er2(Fe,Co)14B intermetallic compounds. Interestingly, a zero thermal expansion (ZTE) has been achieved in a wide temperature range (ΔT = 355 K), which is larger than most existing ZTE alloys. The spontaneous magnetostriction (ωS) reveals a negative contribution arising from the magneto-volume effect to the controllable thermal expansion. The present study could be suitable for the design of controllable thermal expansion of other alloys related to the magneto-volume effect.},
doi = {10.1039/C9QI00819E},
journal = {Inorganic Chemistry Frontiers (Online)},
number = 11,
volume = 6,
place = {United States},
year = {2019},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Phase transformation and thermal expansion of Cu/ZrW 2 O 8 metal matrix composites
journal, March 1999

  • Holzer, Hermann; Dunand, David C.
  • Journal of Materials Research, Vol. 14, Issue 3
  • DOI: 10.1557/JMR.1999.0104

Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides
journal, December 2005

  • Takenaka, K.; Takagi, H.
  • Applied Physics Letters, Vol. 87, Issue 26
  • DOI: 10.1063/1.2147726

Heat capacity and thermal expansion of R2Fe14B compounds (R = Y, Nd and Tm)
journal, December 1987


Negative thermal expansion and electrical properties of α-Cu2V2O7
journal, September 2016


Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi,La)FeO3 over a giant range
journal, August 2013

  • Chen, Jun; Wang, Fangfang; Huang, Qingzhen
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02458

Effect of hydrogenation on the magnetic and magnetoelastic properties of R 2Fe14B compounds (R = Nd, Gd, Er, Lu)
journal, March 2006


Linear Thermal Expansion of Three Tungstates
journal, April 1968


Atomic Linkage Flexibility Tuned Isotropic Negative, Zero, and Positive Thermal Expansion in MZrF 6 (M = Ca, Mn, Fe, Co, Ni, and Zn)
journal, October 2016

  • Hu, Lei; Chen, Jun; Xu, Jiale
  • Journal of the American Chemical Society, Vol. 138, Issue 44
  • DOI: 10.1021/jacs.6b08746

Spin reorientations in R2Fe14-xCoxB systems (R = Pr, Nd and Er)
journal, February 1987


Giant negative thermal expansion in magnetic nanocrystals
journal, October 2008


A fresh twist on shrinking materials
journal, December 2011


Preferential site occupation and magnetic structure of Nd 2 (Co x Fe 1 x ) 1 4 B systems
journal, December 1986

  • Herbst, J. F.; Yelon, W. B.
  • Journal of Applied Physics, Vol. 60, Issue 12
  • DOI: 10.1063/1.337511

Giant Negative Thermal Expansion in Bonded MnCoGe-Based Compounds with Ni 2 In-Type Hexagonal Structure
journal, January 2015

  • Zhao, Ying-Ying; Hu, Feng-Xia; Bao, Li-Fu
  • Journal of the American Chemical Society, Vol. 137, Issue 5
  • DOI: 10.1021/ja510693a

Phonons and anomalous thermal expansion behaviour in crystalline solids
journal, March 2018


Origin of the Invar effect in iron–nickel alloys
journal, July 1999

  • van Schilfgaarde, Mark; Abrikosov, I. A.; Johansson, B.
  • Nature, Vol. 400, Issue 6739
  • DOI: 10.1038/21848

Neutron scattering studies of the spin reorientation in Er 2 Fe 1 4 B
journal, January 1986

  • Yelon, W. B.; Herbst, J. F.
  • Journal of Applied Physics, Vol. 59, Issue 1
  • DOI: 10.1063/1.336845

Structure and negative thermal expansion in the PbTiO3–BiFeO3 system
journal, September 2006

  • Chen, J.; Xing, X. R.; Liu, G. R.
  • Applied Physics Letters, Vol. 89, Issue 10
  • DOI: 10.1063/1.2347279

An Easy Method for the Determination of Debye Temperature from Thermal Expansion Analyses
journal, April 1998


R 2 Fe 14 B materials: Intrinsic properties and technological aspects
journal, October 1991


Abnormal thermal expansion properties of cubic NaZn 13 -type La(Fe,Al) 13 compounds
journal, January 2015

  • Li, Wen; Huang, Rongjin; Wang, Wei
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 8
  • DOI: 10.1039/C4CP05064A

Colossal Positive and Negative Thermal Expansion in the Framework Material Ag3[Co(CN)6]
journal, February 2008


Giant isotropic negative thermal expansion in Y-doped samarium monosulfides by intra-atomic charge transfer
journal, January 2019


Magnetism of ordered and disordered alloys of R2Fe14B (R=Nd, Er) type
journal, December 2013


High field magnetostriction and magnetic thermal expansion of RE2Fe14B hard intermetallics
journal, August 1992

  • Algarabel, P. A.; Del Moral, A.; Ibarra, M. R.
  • Journal of Magnetism and Magnetic Materials, Vol. 114, Issue 1-2
  • DOI: 10.1016/0304-8853(92)90341-K

Negative thermal expansion in Ge-free antiperovskite manganese nitrides: Tin-doping effect
journal, January 2008

  • Takenaka, K.; Asano, K.; Misawa, M.
  • Applied Physics Letters, Vol. 92, Issue 1
  • DOI: 10.1063/1.2831715

Pronounced Negative Thermal Expansion from a Simple Structure: Cubic ScF 3
journal, November 2010

  • Greve, Benjamin K.; Martin, Kenneth L.; Lee, Peter L.
  • Journal of the American Chemical Society, Vol. 132, Issue 44
  • DOI: 10.1021/ja106711v

Opposite Thermal Expansion in Isostructural Noncollinear Antiferromagnetic Compounds of Mn 3 A (A = Ge and Sn)
journal, September 2018


Tunable thermal expansion in framework materials through redox intercalation
journal, February 2017

  • Chen, Jun; Gao, Qilong; Sanson, Andrea
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14441

Tuning the range, magnitude, and sign of the thermal expansion in intermetallic Mn 3 (Zn, M ) x  N( M = Ag, Ge)
journal, June 2012


Zero Thermal Expansion in Magnetic and Metallic Tb(Co,Fe) 2 Intermetallic Compounds
journal, January 2018

  • Song, Yuzhu; Chen, Jun; Liu, Xinzhi
  • Journal of the American Chemical Society, Vol. 140, Issue 2
  • DOI: 10.1021/jacs.7b12235

Synthesis and thermal expansion of ZrO2/ZrW2O8 composites
journal, November 2005


Neutron‐diffraction and Mössbauer effect study of the preferential silicon site occupation and magnetic structure of Nd 2 Fe 14− x Si x B
journal, December 1993

  • Marasinghe, G. K.; Pringle, O. A.; Long, Gary J.
  • Journal of Applied Physics, Vol. 74, Issue 11
  • DOI: 10.1063/1.355080

Guest-Dependent Negative Thermal Expansion in Nanoporous Prussian Blue Analogues M II Pt IV (CN) 6 · x {H 2 O} (0 ≤ x ≤ 2; M = Zn, Cd)
journal, December 2005

  • Goodwin, Andrew L.; Chapman, Karena W.; Kepert, Cameron J.
  • Journal of the American Chemical Society, Vol. 127, Issue 51
  • DOI: 10.1021/ja056460f

Giant Negative Thermal Expansion in NaZn 13 -Type La(Fe, Si, Co) 13 Compounds
journal, July 2013

  • Huang, Rongjin; Liu, Yanying; Fan, Wei
  • Journal of the American Chemical Society, Vol. 135, Issue 31
  • DOI: 10.1021/ja405161z

Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer
journal, June 2011

  • Azuma, Masaki; Chen, Wei-tin; Seki, Hayato
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1361

Single crystal neutron diffraction investigations of the crystal and magnetic structures of R2Fe14B (R=Y, Nd, Ho, Er)
journal, April 2001


Invar effect in R2Fe14B compounds (R  La, Ce, Nd, Sm, Gd, Er)
journal, April 1986


Influence of Co substitution on magnetoelastic properties of Er2Fe14−xCoxB (x=1, 3 and 5) intermetallic compounds
journal, July 2009


Good comprehensive performance of Laves phase Hf1-Ta Fe2 as negative thermal expansion materials
journal, December 2018


Magnetic behavior and anomalous thermal expansion of Nd 2 (Fe 1− x Mn x ) 1 4 B
journal, November 1988

  • Cheng, Ben‐pei; Fu, Shou‐can; Yang, Ying‐chang
  • Journal of Applied Physics, Vol. 64, Issue 10
  • DOI: 10.1063/1.342330