DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Separating the effects of nucleotide and EB binding on microtubule structure

Abstract

Microtubules (MTs) are polymers assembled from αβ-tubulin heterodimers that display the hallmark behavior of dynamic instability. MT dynamics are driven by GTP hydrolysis within the MT lattice, and are highly regulated by a number of MT-associated proteins (MAPs). How MAPs affect MTs is still not fully understood, partly due to a lack of high-resolution structural data on undecorated MTs, which need to serve as a baseline for further comparisons. Here we report three structures of MTs in different nucleotide states (GMPCPP, GDP, and GTPγS) at near-atomic resolution and in the absence of any binding proteins. These structures allowed us to differentiate the effects of nucleotide state versus MAP binding on MT structure. Kinesin binding has a small effect on the extended, GMPCPP-bound lattice, but hardly affects the compacted GDP-MT lattice, while binding of end-binding (EB) proteins can induce lattice compaction (together with lattice twist) in MTs that were initially in an extended and more stable state. We propose a MT lattice-centric model in which the MT lattice serves as a platform that integrates internal tubulin signals, such as nucleotide state, with outside signals, such as binding of MAPs or mechanical forces, resulting in global lattice rearrangements that in turn affectmore » the affinity of other MT partners and result in the exquisite regulation of MT dynamics.« less

Authors:
 [1];  [2]; ORCiD logo [3]
  1. Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; University of California, Berkeley, CA (United States). Department of Molecular and Cell Biology
  2. University of California, Berkeley, CA (United States). Molecular and Cell Biology Graduate Program
  3. Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; University of California, Berkeley, CA (United States). Department of Molecular and Cell Biology; University of California, Berkeley, CA (United States). Howard Hughes Medical Institute
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1625018
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 115; Journal Issue: 27; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences
Country of Publication:
United States
Language:
English
Subject:
Science & Technology - Other Topics

Citation Formats

Zhang, Rui, LaFrance, Benjamin, and Nogales, Eva. Separating the effects of nucleotide and EB binding on microtubule structure. United States: N. p., 2018. Web. doi:10.1073/pnas.1802637115.
Zhang, Rui, LaFrance, Benjamin, & Nogales, Eva. Separating the effects of nucleotide and EB binding on microtubule structure. United States. https://doi.org/10.1073/pnas.1802637115
Zhang, Rui, LaFrance, Benjamin, and Nogales, Eva. Mon . "Separating the effects of nucleotide and EB binding on microtubule structure". United States. https://doi.org/10.1073/pnas.1802637115. https://www.osti.gov/servlets/purl/1625018.
@article{osti_1625018,
title = {Separating the effects of nucleotide and EB binding on microtubule structure},
author = {Zhang, Rui and LaFrance, Benjamin and Nogales, Eva},
abstractNote = {Microtubules (MTs) are polymers assembled from αβ-tubulin heterodimers that display the hallmark behavior of dynamic instability. MT dynamics are driven by GTP hydrolysis within the MT lattice, and are highly regulated by a number of MT-associated proteins (MAPs). How MAPs affect MTs is still not fully understood, partly due to a lack of high-resolution structural data on undecorated MTs, which need to serve as a baseline for further comparisons. Here we report three structures of MTs in different nucleotide states (GMPCPP, GDP, and GTPγS) at near-atomic resolution and in the absence of any binding proteins. These structures allowed us to differentiate the effects of nucleotide state versus MAP binding on MT structure. Kinesin binding has a small effect on the extended, GMPCPP-bound lattice, but hardly affects the compacted GDP-MT lattice, while binding of end-binding (EB) proteins can induce lattice compaction (together with lattice twist) in MTs that were initially in an extended and more stable state. We propose a MT lattice-centric model in which the MT lattice serves as a platform that integrates internal tubulin signals, such as nucleotide state, with outside signals, such as binding of MAPs or mechanical forces, resulting in global lattice rearrangements that in turn affect the affinity of other MT partners and result in the exquisite regulation of MT dynamics.},
doi = {10.1073/pnas.1802637115},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 27,
volume = 115,
place = {United States},
year = {Mon Jun 18 00:00:00 EDT 2018},
month = {Mon Jun 18 00:00:00 EDT 2018}
}

Works referenced in this record:

NAMD2: Greater Scalability for Parallel Molecular Dynamics
journal, May 1999

  • Kalé, Laxmikant; Skeel, Robert; Bhandarkar, Milind
  • Journal of Computational Physics, Vol. 151, Issue 1
  • DOI: 10.1006/jcph.1999.6201

Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling
journal, February 1977


Microtubule-associated proteins control the kinetics of microtubule nucleation
journal, June 2015

  • Wieczorek, Michal; Bechstedt, Susanne; Chaaban, Sami
  • Nature Cell Biology, Vol. 17, Issue 7
  • DOI: 10.1038/ncb3188

GDP-to-GTP exchange on the microtubule end can contribute to the frequency of catastrophe
journal, November 2016

  • Piedra, Felipe-Andrés; Kim, Tae; Garza, Emily S.
  • Molecular Biology of the Cell, Vol. 27, Issue 22
  • DOI: 10.1091/mbc.e16-03-0199

Dynein and kinesin share an overlapping microtubule-binding site
journal, June 2004


Efficient Determination of Protein–Protein Standard Binding Free Energies from First Principles
journal, July 2013

  • Gumbart, James C.; Roux, Benoît; Chipot, Christophe
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 8
  • DOI: 10.1021/ct400273t

Determination of microtubule polarity by cryo-electron microscopy
journal, September 1996


Multiscale modeling of biomolecular systems: in serial and in parallel
journal, April 2007

  • Ayton, Gary S.; Noid, Will G.; Voth, Gregory A.
  • Current Opinion in Structural Biology, Vol. 17, Issue 2
  • DOI: 10.1016/j.sbi.2007.03.004

Template-free 13-protofilament microtubule–MAP assembly visualized at 8 Å resolution
journal, October 2010

  • Fourniol, Franck J.; Sindelar, Charles V.; Amigues, Béatrice
  • Journal of Cell Biology, Vol. 191, Issue 3
  • DOI: 10.1083/jcb.201007081

Multivalent Microtubule Recognition by Tubulin Tyrosine Ligase-like Family Glutamylases
journal, May 2015

  • Garnham, Christopher P.; Vemu, Annapurna; Wilson-Kubalek, Elizabeth M.
  • Cell, Vol. 161, Issue 5
  • DOI: 10.1016/j.cell.2015.04.003

Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates
journal, June 1995


An EB1-binding motif acts as a microtubule tip localization signal
text, January 2009


Unstained microtubules studied by cryo-electron microscopy
journal, January 1985


An EB1-Binding Motif Acts as a Microtubule Tip Localization Signal
journal, July 2009


Microtubule dynamics and microtubule caps: a time-resolved cryo- electron microscopy study
journal, September 1991


Tubulin Dimers Oligomerize before Their Incorporation into Microtubules
journal, November 2008


Structural Basis for Microtubule Binding and Release by Dynein
journal, September 2012


Microtubule-binding agents: a dynamic field of cancer therapeutics
journal, October 2010

  • Dumontet, Charles; Jordan, Mary Ann
  • Nature Reviews Drug Discovery, Vol. 9, Issue 10
  • DOI: 10.1038/nrd3253

The Schizosaccharomyces pombe EB1 Homolog Mal3p Binds and Stabilizes the Microtubule Lattice Seam
journal, December 2006


UCSF Chimera?A visualization system for exploratory research and analysis
journal, January 2004

  • Pettersen, Eric F.; Goddard, Thomas D.; Huang, Conrad C.
  • Journal of Computational Chemistry, Vol. 25, Issue 13
  • DOI: 10.1002/jcc.20084

Promotion of microtubule assembly in vitro by taxol
journal, February 1979

  • Schiff, Peter B.; Fant, Jane; Horwitz, Susan B.
  • Nature, Vol. 277, Issue 5698
  • DOI: 10.1038/277665a0

Multiscale Computational Modeling of Tubulin-Tubulin Lateral Interaction
journal, October 2019


The minimum GTP cap required to stabilize microtubules
journal, December 1994


Gctf: Real-time CTF determination and correction
journal, January 2016


FREALIGN: High-resolution refinement of single particle structures
journal, January 2007


Three-dimensional Structure of ncd-decorated Microtubules Obtained by a Back-projection Method
journal, August 1996

  • Sosa, Hernando; Milligan, Ronald A.
  • Journal of Molecular Biology, Vol. 260, Issue 5
  • DOI: 10.1006/jmbi.1996.0434

EB1 regulates microtubule dynamics and tubulin sheet closure in vitro
journal, March 2008

  • Vitre, Benjamin; Coquelle, Frédéric M.; Heichette, Claire
  • Nature Cell Biology, Vol. 10, Issue 4
  • DOI: 10.1038/ncb1703

The contribution of αβ-tubulin curvature to microtubule dynamics
journal, November 2014

  • Brouhard, Gary J.; Rice, Luke M.
  • The Journal of Cell Biology, Vol. 207, Issue 3
  • DOI: 10.1083/jcb.201407095

Mechanical properties of tubulin intra- and inter-dimer interfaces and their implications for microtubule dynamic instability
journal, August 2019

  • Fedorov, Vladimir A.; Orekhov, Philipp S.; Kholina, Ekaterina G.
  • PLOS Computational Biology, Vol. 15, Issue 8
  • DOI: 10.1371/journal.pcbi.1007327

GTP S microtubules mimic the growing microtubule end structure recognized by end-binding proteins (EBs)
journal, February 2011

  • Maurer, S. P.; Bieling, P.; Cope, J.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 10
  • DOI: 10.1073/pnas.1014758108

Visualizing density maps with UCSF Chimera
journal, January 2007

  • Goddard, Thomas D.; Huang, Conrad C.; Ferrin, Thomas E.
  • Journal of Structural Biology, Vol. 157, Issue 1
  • DOI: 10.1016/j.jsb.2006.06.010

Red light-induced structure changes in phytochrome A from Pisum sativum
journal, February 2021


The role of tubulin–tubulin lattice contacts in the mechanism of microtubule dynamic instability
journal, July 2018

  • Manka, Szymon W.; Moores, Carolyn A.
  • Nature Structural & Molecular Biology, Vol. 25, Issue 7
  • DOI: 10.1038/s41594-018-0087-8

Assembly of GMPCPP-Bound Tubulin into Helical Ribbons and Tubes and Effect of Colchicine
journal, June 2005

  • Wang, Hong-Wei; Long, Sydney; Finley, K. Rose
  • Cell Cycle, Vol. 4, Issue 9
  • DOI: 10.4161/cc.4.9.2042

Evolving Tip Structures Can Explain Age-Dependent Microtubule Catastrophe
journal, July 2013

  • Coombes, Courtney E.; Yamamoto, Ami; Kenzie, Madeline R.
  • Current Biology, Vol. 23, Issue 14
  • DOI: 10.1016/j.cub.2013.05.059

Refined structure of αβ-tubulin at 3.5 Å resolution 1 1Edited by I. A. Wilson
journal, November 2001

  • Löwe, J.; Li, H.; Downing, K. H.
  • Journal of Molecular Biology, Vol. 313, Issue 5
  • DOI: 10.1006/jmbi.2001.5077

Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions
journal, January 2015

  • Brown, Alan; Long, Fei; Nicholls, Robert A.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 71, Issue 1
  • DOI: 10.1107/S1399004714021683

Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP.
journal, October 1992

  • Hyman, A. A.; Salser, S.; Drechsel, D. N.
  • Molecular Biology of the Cell, Vol. 3, Issue 10
  • DOI: 10.1091/mbc.3.10.1155

Lattice Structure of Cytoplasmic Microtubules in a Cultured Mammalian Cell
journal, November 2009

  • McIntosh, J. Richard; Morphew, Mary K.; Grissom, Paula M.
  • Journal of Molecular Biology, Vol. 394, Issue 2
  • DOI: 10.1016/j.jmb.2009.09.033

A structural model of flagellar filament switching across multiple bacterial species
journal, October 2017


Structural differences between yeast and mammalian microtubules revealed by cryo-EM
journal, June 2017

  • Howes, Stuart C.; Geyer, Elisabeth A.; LaFrance, Benjamin
  • Journal of Cell Biology, Vol. 216, Issue 9
  • DOI: 10.1083/jcb.201612195

Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules.
text, January 1996

  • Michael, Caplow,; John, Shanks,
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/t2q7-fa20

A new protocol to accurately determine microtubule lattice seam location
journal, November 2015


Improving the specificity of organophosphorus hydrolase to acephate by mutagenesis at its binding site: a computational study
journal, May 2021

  • Badakhshan, Reza; Mohammadi, Mozafar; Farnoosh, Gholamreza
  • Journal of Molecular Modeling, Vol. 27, Issue 6
  • DOI: 10.1007/s00894-021-04749-6

Structure of the αβ tubulin dimer by electron crystallography
journal, January 1998

  • Nogales, Eva; Wolf, Sharon G.; Downing, Kenneth H.
  • Nature, Vol. 391, Issue 6663
  • DOI: 10.1038/34465

EMAN: Semiautomated Software for High-Resolution Single-Particle Reconstructions
journal, December 1999

  • Ludtke, Steven J.; Baldwin, Philip R.; Chiu, Wah
  • Journal of Structural Biology, Vol. 128, Issue 1
  • DOI: 10.1006/jsbi.1999.4174

Insights into the Distinct Mechanisms of Action of Taxane and Non-Taxane Microtubule Stabilizers from Cryo-EM Structures
journal, March 2017

  • Kellogg, Elizabeth H.; Hejab, Nisreen M. A.; Howes, Stuart
  • Journal of Molecular Biology, Vol. 429, Issue 5
  • DOI: 10.1016/j.jmb.2017.01.001

Doublecortin Recognizes the 13-Protofilament Microtubule Cooperatively and Tracks Microtubule Ends
journal, July 2012


Doublecortin Is Excluded from Growing Microtubule Ends and Recognizes the GDP-Microtubule Lattice
journal, June 2016

  • Ettinger, Andreas; van Haren, Jeffrey; Ribeiro, Susana A.
  • Current Biology, Vol. 26, Issue 12
  • DOI: 10.1016/j.cub.2016.04.020

Microtubule depolymerization promotes particle and chromosome movement in vitro.
journal, March 1991

  • Coue, M.; Lombillo, V. A.; McIntosh, J. R.
  • Journal of Cell Biology, Vol. 112, Issue 6
  • DOI: 10.1083/jcb.112.6.1165

GTP hydrolysis during microtubule assembly
journal, June 1987

  • O'Brien, E. Timothy; Voter, William A.; Erickson, Harold P.
  • Biochemistry, Vol. 26, Issue 13
  • DOI: 10.1021/bi00387a061

The Free Energy Profile of Tubulin Straight-Bent Conformational Changes, with Implications for Microtubule Assembly and Drug Discovery
journal, February 2014


The mechanisms of microtubule catastrophe and rescue: implications from analysis of a dimer-scale computational model
journal, February 2012

  • Margolin, Gennady; Gregoretti, Ivan V.; Cickovski, Trevor M.
  • Molecular Biology of the Cell, Vol. 23, Issue 4
  • DOI: 10.1091/mbc.e11-08-0688

Quantitative electron microscopy of microtubule assembly in vitro
journal, December 1975


Doublecortin Recognizes the Longitudinal Curvature of the Microtubule End and Lattice
journal, October 2014


Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly
journal, June 2005


A robust algorithm for the reconstruction of helical filaments using single-particle methods
journal, December 2000


Structural and functional differences between porcine brain and budding yeast microtubules
journal, January 2018


Microtubule nucleation by γ-tubulin complexes
journal, October 2011

  • Kollman, Justin M.; Merdes, Andreas; Mourey, Lionel
  • Nature Reviews Molecular Cell Biology, Vol. 12, Issue 11
  • DOI: 10.1038/nrm3209

Appion: An integrated, database-driven pipeline to facilitate EM image processing
journal, April 2009

  • Lander, Gabriel C.; Stagg, Scott M.; Voss, Neil R.
  • Journal of Structural Biology, Vol. 166, Issue 1
  • DOI: 10.1016/j.jsb.2009.01.002

Automated molecular microscopy: The new Leginon system
journal, July 2005

  • Suloway, Christian; Pulokas, James; Fellmann, Denis
  • Journal of Structural Biology, Vol. 151, Issue 1
  • DOI: 10.1016/j.jsb.2005.03.010

Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins
journal, August 2015


The 4 Å X-Ray Structure of a Tubulin:Stathmin-like Domain Complex
journal, September 2000


Multiscale models for biological systems
journal, April 2010

  • Martins, M. L.; Ferreira, S. C.; Vilela, M. J.
  • Current Opinion in Colloid & Interface Science, Vol. 15, Issue 1-2
  • DOI: 10.1016/j.cocis.2009.04.004

CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields
journal, January 2009

  • Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.
  • Journal of Computational Chemistry
  • DOI: 10.1002/jcc.21367

Multiscale Estimation of Binding Kinetics Using Brownian Dynamics, Molecular Dynamics and Milestoning
journal, October 2015


Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice
journal, September 2008

  • des Georges, Amédée; Katsuki, Miho; Drummond, Douglas R.
  • Nature Structural & Molecular Biology, Vol. 15, Issue 10
  • DOI: 10.1038/nsmb.1482

EB1 interacts with outwardly curved and straight regions of the microtubule lattice
journal, September 2016

  • Guesdon, Audrey; Bazile, Franck; Buey, Rubén M.
  • Nature Cell Biology, Vol. 18, Issue 10
  • DOI: 10.1038/ncb3412

Drug discovery targeting cell division proteins, microtubules and FtsZ
journal, September 2014

  • Ojima, Iwao; Kumar, Kunal; Awasthi, Divya
  • Bioorganic & Medicinal Chemistry, Vol. 22, Issue 18
  • DOI: 10.1016/j.bmc.2014.02.036

MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy
journal, February 2017

  • Zheng, Shawn Q.; Palovcak, Eugene; Armache, Jean-Paul
  • Nature Methods, Vol. 14, Issue 4
  • DOI: 10.1038/nmeth.4193

Structural Mass Spectrometry of the αβ-Tubulin Dimer Supports a Revised Model of Microtubule Assembly
journal, May 2009

  • Bennett, Melissa J.; Chik, John. K.; Slysz, Gordon W.
  • Biochemistry, Vol. 48, Issue 22
  • DOI: 10.1021/bi900200q

The lattice as allosteric effector: Structural studies of   - and  -tubulin clarify the role of GTP in microtubule assembly
journal, April 2008

  • Rice, L. M.; Montabana, E. A.; Agard, D. A.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 14
  • DOI: 10.1073/pnas.0801155105

Mechanochemical Model of Microtubule Structure and Self-Assembly Kinetics
journal, November 2005


Tracking the ends: a dynamic protein network controls the fate of microtubule tips
journal, April 2008

  • Akhmanova, Anna; Steinmetz, Michel O.
  • Nature Reviews Molecular Cell Biology, Vol. 9, Issue 4
  • DOI: 10.1038/nrm2369

Low-resolution refinement tools in REFMAC 5
journal, March 2012

  • Nicholls, Robert A.; Long, Fei; Murshudov, Garib N.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 68, Issue 4
  • DOI: 10.1107/S090744491105606X

Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules.
journal, April 1996

  • Caplow, M.; Shanks, J.
  • Molecular Biology of the Cell, Vol. 7, Issue 4
  • DOI: 10.1091/mbc.7.4.663

Four-stranded mini microtubules formed by Prosthecobacter BtubAB show dynamic instability
journal, July 2017

  • Deng, Xian; Fink, Gero; Bharat, Tanmay A. M.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 29
  • DOI: 10.1073/pnas.1705062114

Relating nucleotide-dependent conformational changes in free tubulin dimers to tubulin assembly
journal, February 2013

  • Natarajan, Kathiresan; Mohan, Jagan; Senapati, Sanjib
  • Biopolymers, Vol. 99, Issue 5
  • DOI: 10.1002/bip.22153

Nucleotide– and Mal3-dependent changes in fission yeast microtubules suggest a structural plasticity view of dynamics
journal, December 2017

  • von Loeffelholz, Ottilie; Venables, Neil A.; Drummond, Douglas Robert
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/s41467-017-02241-5

EBs Recognize a Nucleotide-Dependent Structural Cap at Growing Microtubule Ends
journal, April 2012


Mechanism of Microtubule Stabilization by Doublecortin
journal, June 2004


Control of the Structural Stability of the Tubulin Dimer by One High Affinity Bound Magnesium Ion at Nucleotide N-site
journal, January 1998

  • Menéndez, Margarita; Rivas, Germán; Dı́az, J. Fernando
  • Journal of Biological Chemistry, Vol. 273, Issue 1
  • DOI: 10.1074/jbc.273.1.167

The predicted role of steric specificity in crowding-mediated effects on reversible biomolecular association
journal, November 2015


Complementary activities of TPX2 and chTOG constitute an efficient importin-regulated microtubule nucleation module
journal, September 2015

  • Roostalu, Johanna; Cade, Nicholas I.; Surrey, Thomas
  • Nature Cell Biology, Vol. 17, Issue 11
  • DOI: 10.1038/ncb3241

Magnesium requirements for guanosine 5'-O-(3-thiotriphosphate) induced assembly of microtubule protein and tubulin
journal, December 1986


Structural Plasticity in Actin and Tubulin Polymer Dynamics
journal, August 2009


Direct visualization of the microtubule lattice seam both in vitro and in vivo.
journal, December 1994

  • Kikkawa, M.; Ishikawa, T.; Nakata, T.
  • The Journal of Cell Biology, Vol. 127, Issue 6
  • DOI: 10.1083/jcb.127.6.1965

Dynamic instability of microtubule growth
journal, November 1984

  • Mitchison, Tim; Kirschner, Marc
  • Nature, Vol. 312, Issue 5991
  • DOI: 10.1038/312237a0

Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444910007493

Structural diversity and dynamics of microtubules and polymorphic tubulin assemblies
journal, January 1990


REFMAC 5 for the refinement of macromolecular crystal structures
journal, March 2011

  • Murshudov, Garib N.; Skubák, Pavol; Lebedev, Andrey A.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S0907444911001314

On the surface lattice of microtubules: helix starts, protofilament number, seam, and handedness.
journal, March 1986

  • Mandelkow, E. M.; Schultheiss, R.; Rapp, R.
  • Journal of Cell Biology, Vol. 102, Issue 3
  • DOI: 10.1083/jcb.102.3.1067

High-Resolution Microtubule Structures Reveal the Structural Transitions in αβ-Tubulin upon GTP Hydrolysis
journal, May 2014


Structural Insights of WHAMM's Interaction with Microtubules by Cryo-EM
journal, May 2017


Nucleotide-Dependent Lateral and Longitudinal Interactions in Microtubules
journal, June 2013

  • Grafmüller, Andrea; Noya, Eva G.; Voth, Gregory A.
  • Journal of Molecular Biology, Vol. 425, Issue 12
  • DOI: 10.1016/j.jmb.2013.03.029

Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries
journal, July 2018


Nucleation of microtubule assembly by a γ-tubulin-containing ring complex
journal, December 1995

  • Zheng, Yixian; Wong, Mei Lie; Alberts, Bruce
  • Nature, Vol. 378, Issue 6557
  • DOI: 10.1038/378578a0

Insights into Antiparallel Microtubule Crosslinking by PRC1, a Conserved Nonmotor Microtubule Binding Protein
journal, August 2010

  • Subramanian, Radhika; Wilson-Kubalek, Elizabeth M.; Arthur, Christopher P.
  • Cell, Vol. 142, Issue 3
  • DOI: 10.1016/j.cell.2010.07.012

A structural model for microtubule minus-end recognition and protection by CAMSAP proteins
journal, October 2017

  • Atherton, Joseph; Jiang, Kai; Stangier, Marcel M.
  • Nature Structural & Molecular Biology, Vol. 24, Issue 11
  • DOI: 10.1038/nsmb.3483

Multiscale Computational Models of Complex Biological Systems
journal, July 2013


Microtubule nucleation by γ-tubulin-containing rings in the centrosome
journal, December 1995

  • Moritz, Michelle; Braunfeld, Michael B.; Sedat, John W.
  • Nature, Vol. 378, Issue 6557
  • DOI: 10.1038/378638a0

Determination of the Size and Chemical Nature of the Stabilizing “Cap” at Microtubule Ends Using Modulators of Polymerization Dynamics
journal, January 2002

  • Panda, Dulal; Miller, Herbert P.; Wilson, Leslie
  • Biochemistry, Vol. 41, Issue 5
  • DOI: 10.1021/bi011767m

Near-atomic cryo-EM structure of PRC1 bound to the microtubule
journal, August 2016

  • Kellogg, Elizabeth H.; Howes, Stuart; Ti, Shih-Chieh
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 34
  • DOI: 10.1073/pnas.1609903113

Mechanisms of kinetic stabilization by the drugs paclitaxel and vinblastine
journal, May 2017

  • Castle, Brian T.; McCubbin, Seth; Prahl, Louis S.
  • Molecular Biology of the Cell, Vol. 28, Issue 9
  • DOI: 10.1091/mbc.e16-08-0567

Automated electron microscope tomography using robust prediction of specimen movements
journal, October 2005


Human aminolevulinate synthase structure reveals a eukaryotic-specific autoinhibitory loop regulating substrate binding and product release
journal, June 2020

  • Bailey, Henry J.; Bezerra, Gustavo A.; Marcero, Jason R.
  • Nature Communications, Vol. 11, Issue 1
  • DOI: 10.1038/s41467-020-16586-x

Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study
journal, December 1991


EB1 Accelerates Two Conformational Transitions Important for Microtubule Maturation and Dynamics
journal, February 2014


A microtubule bestiary: structural diversity in tubulin polymers
journal, November 2017


Guanosine 5'-O-(3-thiotriphosphate), a potent nucleotide inhibitor of microtubule assembly.
journal, September 1984


Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2
journal, November 2016

  • Kimanius, Dari; Forsberg, Björn O.; Scheres, Sjors HW
  • eLife, Vol. 5
  • DOI: 10.7554/eLife.18722

Works referencing / citing this record:

Taxanes convert regions of perturbed microtubule growth into rescue sites
journal, December 2019


The speed of GTP hydrolysis determines GTP cap size and controls microtubule stability.
text, January 2020


Atomistic Basis of Microtubule Dynamic Instability Assessed Via Multiscale Modeling
journal, February 2021


Structural state recognition facilitates tip tracking of EB1 at growing microtubule ends
journal, September 2019


Axonal transport: Driving synaptic function
journal, October 2019


Polyglutamylation of tubulin's C-terminal tail controls pausing and motility of kinesin-3 family member KIF1A
journal, February 2019

  • Lessard, Dominique V.; Zinder, Oraya J.; Hotta, Takashi
  • Journal of Biological Chemistry, Vol. 294, Issue 16
  • DOI: 10.1074/jbc.ra118.005765

Microtubules Gate Tau Condensation to Spatially Regulate Microtubule Functions
journal, February 2020


Mechanical properties of tubulin intra- and inter-dimer interfaces and their implications for microtubule dynamic instability
journal, August 2019

  • Fedorov, Vladimir A.; Orekhov, Philipp S.; Kholina, Ekaterina G.
  • PLOS Computational Biology, Vol. 15, Issue 8
  • DOI: 10.1371/journal.pcbi.1007327

The structure of a 15-stranded actin-like filament from Clostridium botulinum
journal, June 2019


Oligomer Formation of Tau Protein Hyperphosphorylated in Cells
journal, December 2014

  • Tepper, Katharina; Biernat, Jacek; Kumar, Satish
  • Journal of Biological Chemistry, Vol. 289, Issue 49
  • DOI: 10.1074/jbc.M114.611368

Automated cryo-EM Structure Refinement using Correlation-Driven Molecular Dynamics
journal, February 2020


A microtubule RELION-based pipeline for cryo-EM image processing
journal, January 2020

  • Cook, Alexander D.; Manka, Szymon W.; Wang, Su
  • Journal of Structural Biology, Vol. 209, Issue 1
  • DOI: 10.1016/j.jsb.2019.10.004

Tubulin lattice in cilia is in a stressed form regulated by microtubule inner proteins
journal, September 2019

  • Ichikawa, Muneyoshi; Khalifa, Ahmad Abdelzaher Zaki; Kubo, Shintaroh
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 40
  • DOI: 10.1073/pnas.1911119116

Structural determinants of microtubule minus end preference in CAMSAP CKK domains
journal, November 2019


Mitotic phosphorylation by NEK6 and NEK7 reduces the microtubule affinity of EML4 to promote chromosome congression
journal, August 2019

  • Adib, Rozita; Montgomery, Jessica M.; Atherton, Joseph
  • Science Signaling, Vol. 12, Issue 594
  • DOI: 10.1126/scisignal.aaw2939

Spatial positioning of EB family proteins at microtubule tips involves distinct nucleotide-dependent binding properties
journal, September 2018

  • Roth, Daniel; Fitton, Benjamin P.; Chmel, Nikola P.
  • Journal of Cell Science, Vol. 132, Issue 4
  • DOI: 10.1242/jcs.219550

TAPping into the treasures of tubulin using novel protein production methods
journal, November 2018


An estimate to the first approximation of microtubule rupture force
journal, May 2019


Microtubule minus-end stability is dictated by the tubulin off-rate
journal, August 2019

  • Strothman, Claire; Farmer, Veronica; Arpağ, Göker
  • Journal of Cell Biology, Vol. 218, Issue 9
  • DOI: 10.1083/jcb.201905019

Microtubules gate tau condensation to spatially regulate microtubule functions
journal, September 2019


A microtubule RELION-based pipeline for cryo-EM image processing
journal, January 2020

  • Cook, Alexander D.; Manka, Szymon W.; Wang, Su
  • Journal of Structural Biology, Vol. 209, Issue 1
  • DOI: 10.1016/j.jsb.2019.10.004

Selection and Characterization of Artificial Proteins Targeting the Tubulin α Subunit
journal, March 2019


The structure of a 15-stranded actin-like filament from Clostridium botulinum
journal, June 2019


Microtubule structure by cryo-EM: snapshots of dynamic instability
journal, October 2018

  • Manka, Szymon W.; Moores, Carolyn A.
  • Essays in Biochemistry, Vol. 62, Issue 6
  • DOI: 10.1042/ebc20180031

TAPping into the treasures of tubulin using novel protein production methods
journal, November 2018


GTP-tubulin loves microtubule plus ends but marries the minus ends
journal, August 2019


The speed of GTP hydrolysis determines GTP cap size and controls microtubule stability.
text, January 2020


Structural model for differential cap maturation at growing microtubule ends
journal, March 2020

  • Estévez-Gallego, Juan; Josa-Prado, Fernando; Ku, Siou
  • eLife, Vol. 9
  • DOI: 10.7554/elife.50155