DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost

Abstract

Deep learning is revolutionizing many areas of science and technology, especially image, text, and speech recognition. In this paper, we demonstrate how a deep neural network (NN) trained on quantum mechanical (QM) DFT calculations can learn an accurate and transferable potential for organic molecules. We introduce ANAKIN-ME (Accurate NeurAl networK engINe for Molecular Energies) or ANI for short. ANI is a new method designed with the intent of developing transferable neural network potentials that utilize a highly-modified version of the Behler and Parrinello symmetry functions to build single-atom atomic environment vectors (AEV) as a molecular representation. AEVs provide the ability to train neural networks to data that spans both configurational and conformational space, a feat not previously accomplished on this scale. We utilized ANI to build a potential called ANI-1, which was trained on a subset of the GDB databases with up to 8 heavy atoms in order to predict total energies for organic molecules containing four atom types: H, C, N, and O. To obtain an accelerated but physically relevant sampling of molecular potential surfaces, we also proposed a Normal Mode Sampling (NMS) method for generating molecular conformations. Through a series of case studies, we show that ANI-1 ismore » chemically accurate compared to reference DFT calculations on much larger molecular systems (up to 54 atoms) than those included in the training data set.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Univ. of Florida, Gainesville, FL (United States). Dept. of Chemistry
  2. Univ. of North Carolina, Chapel Hill, NC (United States). Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
National Institutes of Health (NIH); US Department of the Navy, Office of Naval Research (ONR); Eshelman Institute for Innovation; NVIDIA Corporation; USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1624947
Grant/Contract Number:  
AC52-06NA25396; GM110077; DMR110088; ACI-1053575
Resource Type:
Accepted Manuscript
Journal Name:
Chemical Science
Additional Journal Information:
Journal Volume: 8; Journal Issue: 4; Journal ID: ISSN 2041-6520
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 97 MATHEMATICS AND COMPUTING; 74 ATOMIC AND MOLECULAR PHYSICS; Chemistry

Citation Formats

Smith, J. S., Isayev, O., and Roitberg, A. E. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. United States: N. p., 2017. Web. doi:10.1039/c6sc05720a.
Smith, J. S., Isayev, O., & Roitberg, A. E. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. United States. https://doi.org/10.1039/c6sc05720a
Smith, J. S., Isayev, O., and Roitberg, A. E. Wed . "ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost". United States. https://doi.org/10.1039/c6sc05720a. https://www.osti.gov/servlets/purl/1624947.
@article{osti_1624947,
title = {ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost},
author = {Smith, J. S. and Isayev, O. and Roitberg, A. E.},
abstractNote = {Deep learning is revolutionizing many areas of science and technology, especially image, text, and speech recognition. In this paper, we demonstrate how a deep neural network (NN) trained on quantum mechanical (QM) DFT calculations can learn an accurate and transferable potential for organic molecules. We introduce ANAKIN-ME (Accurate NeurAl networK engINe for Molecular Energies) or ANI for short. ANI is a new method designed with the intent of developing transferable neural network potentials that utilize a highly-modified version of the Behler and Parrinello symmetry functions to build single-atom atomic environment vectors (AEV) as a molecular representation. AEVs provide the ability to train neural networks to data that spans both configurational and conformational space, a feat not previously accomplished on this scale. We utilized ANI to build a potential called ANI-1, which was trained on a subset of the GDB databases with up to 8 heavy atoms in order to predict total energies for organic molecules containing four atom types: H, C, N, and O. To obtain an accelerated but physically relevant sampling of molecular potential surfaces, we also proposed a Normal Mode Sampling (NMS) method for generating molecular conformations. Through a series of case studies, we show that ANI-1 is chemically accurate compared to reference DFT calculations on much larger molecular systems (up to 54 atoms) than those included in the training data set.},
doi = {10.1039/c6sc05720a},
journal = {Chemical Science},
number = 4,
volume = 8,
place = {United States},
year = {Wed Feb 08 00:00:00 EST 2017},
month = {Wed Feb 08 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 942 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Systematic optimization of long-range corrected hybrid density functionals
journal, February 2008

  • Chai, Jeng-Da; Head-Gordon, Martin
  • The Journal of Chemical Physics, Vol. 128, Issue 8
  • DOI: 10.1063/1.2834918

Regularization Algorithms for Learning That Are Equivalent to Multilayer Networks
journal, February 1990


A random-sampling high dimensional model representation neural network for building potential energy surfaces
journal, August 2006

  • Manzhos, Sergei; Carrington, Tucker
  • The Journal of Chemical Physics, Vol. 125, Issue 8
  • DOI: 10.1063/1.2336223

Deep learning
journal, May 2015

  • LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey
  • Nature, Vol. 521, Issue 7553
  • DOI: 10.1038/nature14539

The history and development of the fentanyl series
journal, April 1992


Machine Learning for Quantum Mechanical Properties of Atoms in Molecules
text, January 2015

  • Matthias, Rupp,; Raghunathan, Ramakrishnan,; Anatole, von Lilienfeld, O.
  • American Chemical Society
  • DOI: 10.5451/unibas-ep53266

Accuracy and transferability of Gaussian approximation potential models for tungsten
journal, September 2014


On representing chemical environments
journal, May 2013


Amphetamine, past and present – a pharmacological and clinical perspective
journal, March 2013

  • Heal, David J.; Smith, Sharon L.; Gosden, Jane
  • Journal of Psychopharmacology, Vol. 27, Issue 6
  • DOI: 10.1177/0269881113482532

Exploring chemistry with the fragment molecular orbital method
journal, January 2012

  • Fedorov, Dmitri G.; Nagata, Takeshi; Kitaura, Kazuo
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 21
  • DOI: 10.1039/c2cp23784a

Potential Energy Surfaces Fitted by Artificial Neural Networks
journal, March 2010

  • Handley, Chris M.; Popelier, Paul L. A.
  • The Journal of Physical Chemistry A, Vol. 114, Issue 10
  • DOI: 10.1021/jp9105585

Virtual Exploration of the Small-Molecule Chemical Universe below 160 Daltons
journal, February 2005

  • Fink, Tobias; Bruggesser, Heinz; Reymond, Jean-Louis
  • Angewandte Chemie International Edition, Vol. 44, Issue 10
  • DOI: 10.1002/anie.200462457

Fragment molecular orbital method: an approximate computational method for large molecules
journal, November 1999


Neural network-based approaches for building high dimensional and quantum dynamics-friendly potential energy surfaces
journal, October 2014

  • Manzhos, Sergei; Dawes, Richard; Carrington, Tucker
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24795

Potential energy surfaces from high fidelity fitting of ab initio points: the permutation invariant polynomial - neural network approach
journal, July 2016


Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
journal, January 2012


Future possibilities for artificial intelligence in the practical management of hypertension
journal, July 2020

  • Koshimizu, Hiroshi; Kojima, Ryosuke; Okuno, Yasushi
  • Hypertension Research, Vol. 43, Issue 12
  • DOI: 10.1038/s41440-020-0498-x

Comparing the accuracy of high-dimensional neural network potentials and the systematic molecular fragmentation method: A benchmark study for all-trans alkanes
journal, May 2016

  • Gastegger, Michael; Kauffmann, Clemens; Behler, Jörg
  • The Journal of Chemical Physics, Vol. 144, Issue 19
  • DOI: 10.1063/1.4950815

How van der Waals interactions determine the unique properties of water
journal, July 2016

  • Morawietz, Tobias; Singraber, Andreas; Dellago, Christoph
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 30
  • DOI: 10.1073/pnas.1602375113

ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB
journal, July 2015

  • Maier, James A.; Martinez, Carmenza; Kasavajhala, Koushik
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 8
  • DOI: 10.1021/acs.jctc.5b00255

The SCC-DFTB method and its application to biological systems
journal, December 2005


ReaxFF:  A Reactive Force Field for Hydrocarbons
journal, October 2001

  • van Duin, Adri C. T.; Dasgupta, Siddharth; Lorant, Francois
  • The Journal of Physical Chemistry A, Vol. 105, Issue 41
  • DOI: 10.1021/jp004368u

Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces
journal, April 2007


Application of the PM6 method to modeling proteins
journal, December 2008


Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations
journal, January 2011

  • Behler, Jörg
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 40
  • DOI: 10.1039/c1cp21668f

Machine Learning Energies of 2 Million Elpasolite ( A B C 2 D 6 ) Crystals
journal, September 2016


Comparison of multiple Amber force fields and development of improved protein backbone parameters
journal, November 2006

  • Hornak, Viktor; Abel, Robert; Okur, Asim
  • Proteins: Structure, Function, and Bioinformatics, Vol. 65, Issue 3
  • DOI: 10.1002/prot.21123

Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties
journal, April 2015

  • von Lilienfeld, O. Anatole; Ramakrishnan, Raghunathan; Rupp, Matthias
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24912

Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model
journal, June 1985

  • Dewar, Michael J. S.; Zoebisch, Eve G.; Healy, Eamonn F.
  • Journal of the American Chemical Society, Vol. 107, Issue 13
  • DOI: 10.1021/ja00299a024

Permutation invariant potential energy surfaces for polyatomic reactions using atomistic neural networks
journal, June 2016

  • Kolb, Brian; Zhao, Bin; Li, Jun
  • The Journal of Chemical Physics, Vol. 144, Issue 22
  • DOI: 10.1063/1.4953560

Machine learning exciton dynamics
journal, January 2016

  • Häse, Florian; Valleau, Stéphanie; Pyzer-Knapp, Edward
  • Chemical Science, Vol. 7, Issue 8
  • DOI: 10.1039/C5SC04786B

Virtual Exploration of the Small-Molecule Chemical Universe below 160 Daltons
journal, February 2005

  • Fink, Tobias; Bruggesser, Heinz; Reymond, Jean-Louis
  • Angewandte Chemie, Vol. 117, Issue 10
  • DOI: 10.1002/ange.200462457

Machine Learning for Quantum Mechanical Properties of Atoms in Molecules
journal, July 2015

  • Rupp, Matthias; Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 16
  • DOI: 10.1021/acs.jpclett.5b01456

Ab initio potential-energy surfaces for complex, multichannel systems using modified novelty sampling and feedforward neural networks
journal, February 2005

  • Raff, L. M.; Malshe, M.; Hagan, M.
  • The Journal of Chemical Physics, Vol. 122, Issue 8
  • DOI: 10.1063/1.1850458

Multilayer feedforward networks are universal approximators
journal, January 1989


Fast and accurate modeling of molecular atomization energies with machine learning
text, January 2012

  • Rupp, Matthias; Tkatchenko, Alexandre; Müller, Klaus-Robert
  • American Physical Society
  • DOI: 10.5451/unibas-ep43360

Ab Initio Investigation of O–H Dissociation from the Al–OH 2 Complex Using Molecular Dynamics and Neural Network Fitting
journal, January 2016

  • Ho, Thi H.; Pham-Tran, Nguyen-Nguyen; Kawazoe, Yoshiyuki
  • The Journal of Physical Chemistry A, Vol. 120, Issue 3
  • DOI: 10.1021/acs.jpca.5b09497

Constructing high-dimensional neural network potentials: A tutorial review
journal, March 2015

  • Behler, Jörg
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24890

Deep learning in neural networks: An overview
journal, January 2015


Quantum chemistry structures and properties of 134 kilo molecules
journal, August 2014

  • Ramakrishnan, Raghunathan; Dral, Pavlo O.; Rupp, Matthias
  • Scientific Data, Vol. 1, Issue 1
  • DOI: 10.1038/sdata.2014.22

Quantum chemistry structures and properties of 134 kilo molecules
text, January 2014


Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
text, January 2011


Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties
preprint, January 2013


Machine Learning Exciton Dynamics
text, January 2015


Works referencing / citing this record:

Committee machine that votes for similarity between materials
journal, October 2018


Hierarchical modeling of molecular energies using a deep neural network
journal, June 2018

  • Lubbers, Nicholas; Smith, Justin S.; Barros, Kipton
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5011181

Learning from the density to correct total energy and forces in first principle simulations
journal, October 2019

  • Dick, Sebastian; Fernandez-Serra, Marivi
  • The Journal of Chemical Physics, Vol. 151, Issue 14
  • DOI: 10.1063/1.5114618

Molecular force fields with gradient-domain machine learning: Construction and application to dynamics of small molecules with coupled cluster forces
journal, March 2019

  • Sauceda, Huziel E.; Chmiela, Stefan; Poltavsky, Igor
  • The Journal of Chemical Physics, Vol. 150, Issue 11
  • DOI: 10.1063/1.5078687

Correlation of structure with UV-visible spectra by varying SH composition in Au-SH nanoclusters
journal, August 2018

  • Chiriki, Siva; Jindal, Shweta; Singh, Priya
  • The Journal of Chemical Physics, Vol. 149, Issue 7
  • DOI: 10.1063/1.5031478

Message-passing neural networks for high-throughput polymer screening
journal, June 2019

  • St. John, Peter C.; Phillips, Caleb; Kemper, Travis W.
  • The Journal of Chemical Physics, Vol. 150, Issue 23
  • DOI: 10.1063/1.5099132

Machine learning and signed particles, an alternative and efficient way to simulate quantum systems
journal, February 2019

  • Sellier, Jean Michel; Kapanova, Kristina G.; Leygonie, Jacob
  • International Journal of Quantum Chemistry, Vol. 119, Issue 23
  • DOI: 10.1002/qua.26017

Deep reinforcement learning for de novo drug design
journal, July 2018

  • Popova, Mariya; Isayev, Olexandr; Tropsha, Alexander
  • Science Advances, Vol. 4, Issue 7
  • DOI: 10.1126/sciadv.aap7885

From DFT to machine learning: recent approaches to materials science–a review
journal, May 2019

  • Schleder, Gabriel R.; Padilha, Antonio C. M.; Acosta, Carlos Mera
  • Journal of Physics: Materials, Vol. 2, Issue 3
  • DOI: 10.1088/2515-7639/ab084b

Synthetic organic chemistry driven by artificial intelligence
journal, August 2019

  • de Almeida, A. Filipa; Moreira, Rui; Rodrigues, Tiago
  • Nature Reviews Chemistry, Vol. 3, Issue 10
  • DOI: 10.1038/s41570-019-0124-0

Potential energy surface interpolation with neural networks for instanton rate calculations
journal, March 2018

  • Cooper, April M.; Hallmen, Philipp P.; Kästner, Johannes
  • The Journal of Chemical Physics, Vol. 148, Issue 9
  • DOI: 10.1063/1.5015950

Structure and dynamics of warm dense aluminum: a molecular dynamics study with density functional theory and deep potential
journal, January 2020

  • Liu, Qianrui; Lu, Denghui; Chen, Mohan
  • Journal of Physics: Condensed Matter, Vol. 32, Issue 14
  • DOI: 10.1088/1361-648X/ab5890

Data sampling scheme for reproducing energies along reaction coordinates in high-dimensional neural network potentials
journal, April 2019

  • Okamoto, Yasuharu
  • The Journal of Chemical Physics, Vol. 150, Issue 13
  • DOI: 10.1063/1.5078394

Machine learning for interatomic potential models
journal, February 2020

  • Mueller, Tim; Hernandez, Alberto; Wang, Chuhong
  • The Journal of Chemical Physics, Vol. 152, Issue 5
  • DOI: 10.1063/1.5126336

Machine-learned multi-system surrogate models for materials prediction
text, January 2019

  • Nyshadham, C.; Rupp, M.; Bekker, B.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.39878

Modelling of framework materials at multiple scales: current practices and open questions
journal, May 2019

  • Fraux, Guillaume; Chibani, Siwar; Coudert, François-Xavier
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 377, Issue 2149
  • DOI: 10.1098/rsta.2018.0220

Use of molecular dynamics fingerprints (MDFPs) in SAMPL6 octanol–water log P blind challenge
journal, November 2019


RapidRMSD: rapid determination of RMSDs corresponding to motions of flexible molecules
journal, March 2018


Hammett neural networks: prediction of frontier orbital energies of tungsten–benzylidyne photoredox complexes
journal, January 2019

  • Chang, Alexander M.; Freeze, Jessica G.; Batista, Victor S.
  • Chemical Science, Vol. 10, Issue 28
  • DOI: 10.1039/c9sc02339a

Isotope effects in liquid water via deep potential molecular dynamics
journal, October 2019


Metadynamics for training neural network model chemistries: A competitive assessment
journal, June 2018

  • Herr, John E.; Yao, Kun; McIntyre, Ryker
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5020067

Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions
journal, November 2019


A novel approach to describe chemical environments in high-dimensional neural network potentials
journal, April 2019

  • Kocer, Emir; Mason, Jeremy K.; Erturk, Hakan
  • The Journal of Chemical Physics, Vol. 150, Issue 15
  • DOI: 10.1063/1.5086167

FCHL revisited: Faster and more accurate quantum machine learning
journal, January 2020

  • Christensen, Anders S.; Bratholm, Lars A.; Faber, Felix A.
  • The Journal of Chemical Physics, Vol. 152, Issue 4
  • DOI: 10.1063/1.5126701

Machine learning molecular dynamics for the simulation of infrared spectra
journal, January 2017

  • Gastegger, Michael; Behler, Jörg; Marquetand, Philipp
  • Chemical Science, Vol. 8, Issue 10
  • DOI: 10.1039/c7sc02267k

Quantum Machine Learning in Chemical Compound Space
journal, March 2018

  • von Lilienfeld, O. Anatole
  • Angewandte Chemie International Edition, Vol. 57, Issue 16
  • DOI: 10.1002/anie.201709686

Artificial intelligence exploration of unstable protocells leads to predictable properties and discovery of collective behavior
journal, January 2018

  • Points, Laurie J.; Taylor, James Ward; Grizou, Jonathan
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 5
  • DOI: 10.1073/pnas.1711089115

Comparison of different machine learning models for the prediction of forces in copper and silicon dioxide
journal, January 2018

  • Li, Wenwen; Ando, Yasunobu
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 47
  • DOI: 10.1039/c8cp04508a

Atomistic structure learning
journal, August 2019

  • Jørgensen, Mathias S.; Mortensen, Henrik L.; Meldgaard, Søren A.
  • The Journal of Chemical Physics, Vol. 151, Issue 5
  • DOI: 10.1063/1.5108871

Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning
journal, September 2019


Accelerating the discovery of materials for clean energy in the era of smart automation
journal, April 2018

  • Tabor, Daniel P.; Roch, Loïc M.; Saikin, Semion K.
  • Nature Reviews Materials, Vol. 3, Issue 5
  • DOI: 10.1038/s41578-018-0005-z

Machine learning in materials science
journal, August 2019


Prospects for Declarative Mathematical Modeling of Complex Biological Systems
journal, June 2019


Machine learning unifies the modeling of materials and molecules.
text, January 2017

  • Bartók, Albert P.; De, Sandip; Poelking, Carl
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.21944

BAND NN: A Deep Learning Framework for Energy Prediction and Geometry Optimization of Organic Small Molecules
journal, December 2019

  • Laghuvarapu, Siddhartha; Pathak, Yashaswi; Priyakumar, U. Deva
  • Journal of Computational Chemistry, Vol. 41, Issue 8
  • DOI: 10.1002/jcc.26128

The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics
journal, January 2018

  • Yao, Kun; Herr, John E.; Toth, David W.
  • Chemical Science, Vol. 9, Issue 8
  • DOI: 10.1039/c7sc04934j

Toward Design of Novel Materials for Organic Electronics
text, January 2019


SchNet – A deep learning architecture for molecules and materials
journal, June 2018

  • Schütt, K. T.; Sauceda, H. E.; Kindermans, P. -J.
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5019779

Machine learning and artificial neural network accelerated computational discoveries in materials science
journal, November 2019

  • Hong, Yang; Hou, Bo; Jiang, Hengle
  • WIREs Computational Molecular Science, Vol. 10, Issue 3
  • DOI: 10.1002/wcms.1450

Dataset’s chemical diversity limits the generalizability of machine learning predictions
journal, November 2019

  • Glavatskikh, Marta; Leguy, Jules; Hunault, Gilles
  • Journal of Cheminformatics, Vol. 11, Issue 1
  • DOI: 10.1186/s13321-019-0391-2

Deep neural network affinity model for BACE inhibitors in D3R Grand Challenge 4
journal, January 2020


Review of force fields and intermolecular potentials used in atomistic computational materials research
journal, September 2018

  • Harrison, Judith A.; Schall, J. David; Maskey, Sabina
  • Applied Physics Reviews, Vol. 5, Issue 3
  • DOI: 10.1063/1.5020808

Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics
journal, April 2018


Systematic Design-of-Experiments, factorial-design approaches for tuning simple empirical water models
journal, June 2019


Machine Learning Interatomic Potentials as Emerging Tools for Materials Science
journal, September 2019

  • Deringer, Volker L.; Caro, Miguel A.; Csányi, Gábor
  • Advanced Materials, Vol. 31, Issue 46
  • DOI: 10.1002/adma.201902765

Understanding the thermal properties of amorphous solids using machine-learning-based interatomic potentials
text, January 2018

  • Sosso, Gc; Deringer, Volker; Elliott, Stephen
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.34288

Adiabatic and nonadiabatic energy dissipation during scattering of vibrationally excited CO from Au(111)
journal, November 2019


Evaluation of experimental alkali metal ion–ligand noncovalent bond strengths with DLPNO-CCSD(T) method
journal, July 2019

  • Maity, Bholanath; Minenkov, Yury; Cavallo, Luigi
  • The Journal of Chemical Physics, Vol. 151, Issue 1
  • DOI: 10.1063/1.5099580

Machine learning for molecular and materials science
journal, July 2018


wACSF—Weighted atom-centered symmetry functions as descriptors in machine learning potentials
journal, June 2018

  • Gastegger, M.; Schwiedrzik, L.; Bittermann, M.
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5019667

Gaussian approximation potential modeling of lithium intercalation in carbon nanostructures
journal, June 2018

  • Fujikake, So; Deringer, Volker L.; Lee, Tae Hoon
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5016317

Data-driven design of inorganic materials with the Automatic Flow Framework for Materials Discovery
journal, September 2018

  • Oses, Corey; Toher, Cormac; Curtarolo, Stefano
  • MRS Bulletin, Vol. 43, Issue 9
  • DOI: 10.1557/mrs.2018.207

Prediction of atomization energy using graph kernel and active learning
journal, January 2019

  • Tang, Yu-Hang; de Jong, Wibe A.
  • The Journal of Chemical Physics, Vol. 150, Issue 4
  • DOI: 10.1063/1.5078640

Extending the accuracy of the SNAP interatomic potential form
journal, June 2018

  • Wood, Mitchell A.; Thompson, Aidan P.
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5017641

DeltaDelta neural networks for lead optimization of small molecule potency
journal, January 2019

  • Jiménez-Luna, José; Pérez-Benito, Laura; Martínez-Rosell, Gerard
  • Chemical Science, Vol. 10, Issue 47
  • DOI: 10.1039/c9sc04606b

Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials
journal, June 2018

  • Imbalzano, Giulio; Anelli, Andrea; Giofré, Daniele
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5024611

Atom-density representations for machine learning
journal, April 2019

  • Willatt, Michael J.; Musil, Félix; Ceriotti, Michele
  • The Journal of Chemical Physics, Vol. 150, Issue 15
  • DOI: 10.1063/1.5090481

Data‐Driven Materials Science: Status, Challenges, and Perspectives
journal, November 2019

  • Himanen, Lauri; Geurts, Amber; Foster, Adam Stuart
  • Advanced Science, Vol. 7, Issue 2
  • DOI: 10.1002/advs.201903667

Reproducing global potential energy surfaces with continuous-filter convolutional neural networks
journal, May 2019

  • Brorsen, Kurt R.
  • The Journal of Chemical Physics, Vol. 150, Issue 20
  • DOI: 10.1063/1.5093908

Fast, accurate, and transferable many-body interatomic potentials by symbolic regression
journal, November 2019

  • Hernandez, Alberto; Balasubramanian, Adarsh; Yuan, Fenglin
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0249-1

Massive computational acceleration by using neural networks to emulate mechanism-based biological models
journal, September 2019


Machine Learning Interatomic Potentials as Emerging Tools for Materials Science.
journalarticle, January 2019


Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels
journal, June 2017

  • Dral, Pavlo O.; Owens, Alec; Yurchenko, Sergei N.
  • The Journal of Chemical Physics, Vol. 146, Issue 24
  • DOI: 10.1063/1.4989536

Adaptive coupling of a deep neural network potential to a classical force field
journal, October 2018

  • Zhang, Linfeng; Wang, Han; E., Weinan
  • The Journal of Chemical Physics, Vol. 149, Issue 15
  • DOI: 10.1063/1.5042714

A universal density matrix functional from molecular orbital-based machine learning: Transferability across organic molecules
journal, April 2019

  • Cheng, Lixue; Welborn, Matthew; Christensen, Anders S.
  • The Journal of Chemical Physics, Vol. 150, Issue 13
  • DOI: 10.1063/1.5088393

Neural-network-enhanced evolutionary algorithm applied to supported metal nanoparticles
journal, May 2018


Making machine learning a useful tool in the accelerated discovery of transition metal complexes
journal, July 2019

  • Kulik, Heather J.
  • WIREs Computational Molecular Science, Vol. 10, Issue 1
  • DOI: 10.1002/wcms.1439

Unsupervised machine learning in atomistic simulations, between predictions and understanding
journal, April 2019

  • Ceriotti, Michele
  • The Journal of Chemical Physics, Vol. 150, Issue 15
  • DOI: 10.1063/1.5091842

The future of force fields in computer-aided drug design
journal, September 2019

  • Cole, Daniel J.; Horton, Joshua T.; Nelson, Lauren
  • Future Medicinal Chemistry, Vol. 11, Issue 18
  • DOI: 10.4155/fmc-2019-0196

A Critical Review of Machine Learning of Energy Materials
journal, January 2020


Multiscale methods in drug design bridge chemical and biological complexity in the search for cures
journal, April 2018


Artificial neural network correction for density-functional tight-binding molecular dynamics simulations
journal, June 2019

  • Zhu, Junmian; Vuong, Van Quan; Sumpter, Bobby G.
  • MRS Communications, Vol. 9, Issue 3
  • DOI: 10.1557/mrc.2019.80

Large-scale comparison of machine learning methods for drug target prediction on ChEMBL
journal, January 2018

  • Mayr, Andreas; Klambauer, Günter; Unterthiner, Thomas
  • Chemical Science, Vol. 9, Issue 24
  • DOI: 10.1039/c8sc00148k

Compressing physics with an autoencoder: Creating an atomic species representation to improve machine learning models in the chemical sciences
journal, August 2019

  • Herr, John E.; Koh, Kevin; Yao, Kun
  • The Journal of Chemical Physics, Vol. 151, Issue 8
  • DOI: 10.1063/1.5108803

Machine Learning a General-Purpose Interatomic Potential for Silicon
journal, December 2018


Generative Models for Artificially-intelligent Molecular Design
journal, January 2018


Machine learning unifies the modeling of materials and molecules
journal, December 2017

  • Bartók, Albert P.; De, Sandip; Poelking, Carl
  • Science Advances, Vol. 3, Issue 12
  • DOI: 10.1126/sciadv.1701816

Tradeoffs and Compatibilities of Chemical Properties in CpHqFrOs System
journal, July 2019


A fast neural network approach for direct covariant forces prediction in complex multi-element extended systems
journal, September 2019

  • Mailoa, Jonathan P.; Kornbluth, Mordechai; Batzner, Simon
  • Nature Machine Intelligence, Vol. 1, Issue 10
  • DOI: 10.1038/s42256-019-0098-0

Machine Learning a General-Purpose Interatomic Potential for Silicon
text, January 2018

  • Bartók, Ap; Kermode, J.; Bernstein, N.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.34909

Simulating Diffusion Properties of Solid‐State Electrolytes via a Neural Network Potential: Performance and Training Scheme
journal, December 2019

  • Marcolongo, Aris; Binninger, Tobias; Zipoli, Federico
  • ChemSystemsChem, Vol. 2, Issue 3
  • DOI: 10.1002/syst.201900031

Machine learning for the modeling of interfaces in energy storage and conversion materials
journal, July 2019


Data‐Driven Materials Science: Status, Challenges, and Perspectives
journal, September 2019

  • Himanen, Lauri; Geurts, Amber; Foster, Adam Stuart
  • Advanced Science, Vol. 6, Issue 21
  • DOI: 10.1002/advs.201900808

Operators in quantum machine learning: Response properties in chemical space
journal, February 2019

  • Christensen, Anders S.; Faber, Felix A.; von Lilienfeld, O. Anatole
  • The Journal of Chemical Physics, Vol. 150, Issue 6
  • DOI: 10.1063/1.5053562

Representations and descriptors unifying the study of molecular and bulk systems
journal, December 2019

  • Rossi, Kevin; Cumby, James
  • International Journal of Quantum Chemistry, Vol. 120, Issue 8
  • DOI: 10.1002/qua.26151

Machine-learned multi-system surrogate models for materials prediction
journal, April 2019

  • Nyshadham, Chandramouli; Rupp, Matthias; Bekker, Brayden
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0189-9

Atomic partial charge predictions for furanoses by random forest regression with atom type symmetry function
journal, January 2020


Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning
journal, February 2019

  • Podryabinkin, Evgeny V.; Tikhonov, Evgeny V.; Shapeev, Alexander V.
  • Physical Review B, Vol. 99, Issue 6
  • DOI: 10.1103/physrevb.99.064114

How machine learning can assist the interpretation of ab initio molecular dynamics simulations and conceptual understanding of chemistry
journal, January 2019

  • Häse, Florian; Fdez. Galván, Ignacio; Aspuru-Guzik, Alán
  • Chemical Science, Vol. 10, Issue 8
  • DOI: 10.1039/c8sc04516j

Constructing convex energy landscapes for atomistic structure optimization
journal, December 2019


Solving the electronic structure problem with machine learning
journal, February 2019

  • Chandrasekaran, Anand; Kamal, Deepak; Batra, Rohit
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0162-7

Enumeration of de novo inorganic complexes for chemical discovery and machine learning
journal, January 2020

  • Gugler, Stefan; Janet, Jon Paul; Kulik, Heather J.
  • Molecular Systems Design & Engineering, Vol. 5, Issue 1
  • DOI: 10.1039/c9me00069k

A shared-weight neural network architecture for predicting molecular properties
journal, January 2019

  • Profitt, Trevor A.; Pearson, Jason K.
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 47
  • DOI: 10.1039/c9cp03103k

Constant size descriptors for accurate machine learning models of molecular properties
journal, June 2018

  • Collins, Christopher R.; Gordon, Geoffrey J.; von Lilienfeld, O. Anatole
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5020441

Boltzmann Generators – Sampling Equilibrium States of Many-Body Systems with Deep Learning
text, January 2019


Boltzmann Generators – Sampling Equilibrium States of Many-Body Systems with Deep Learning
text, January 2019


Understanding the thermal properties of amorphous solids using machine-learning-based interatomic potentials
journal, March 2018


Toward Design of Novel Materials for Organic Electronics
journal, April 2019

  • Friederich, Pascal; Fediai, Artem; Kaiser, Simon
  • Advanced Materials, Vol. 31, Issue 26
  • DOI: 10.1002/adma.201808256

Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning
journal, July 2019


De novo exploration and self-guided learning of potential-energy surfaces
text, January 2019

  • Bernstein, Noam; Csányi, Gábor; Deringer, Volker L.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.58436

The TensorMol-0.1 Model Chemistry: a Neural Network Augmented with Long-Range Physics
preprint, January 2017


Deep Reinforcement Learning for De-Novo Drug Design
text, January 2017


Extending the Accuracy of the SNAP Interatomic Potential Form
text, January 2017


Gaussian approximation potential modeling of lithium intercalation in carbon nanostructures
text, January 2017


SchNet - a deep learning architecture for molecules and materials
text, January 2017


Metadynamics for Training Neural Network Model Chemistries: a Competitive Assessment
text, January 2017


Automatic Selection of Atomic Fingerprints and Reference Configurations for Machine-Learning Potentials
text, January 2018


Adaptive coupling of a deep neural network potential to a classical force field
text, January 2018


Machine-learned multi-system surrogate models for materials prediction
text, January 2018


FCHL revisited: faster and more accurate quantum machine learning
text, January 2019


Local invertibility and sensitivity of atomic structure-feature mappings
preprint, January 2021


Local invertibility and sensitivity of atomic structure-feature mappings
journal, January 2021