DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural and Morphological Evolution of Lead Dendrites during Electrochemical Migration

Abstract

The electrochemical deposition and dissolution of lead on gold electrodes immersed in an aqueous solution of lead nitrate were studied in situ using a biasing liquid cell by transmission electron microscopy (TEM). We investigate in real time the growth mechanisms of lead dendrites as deposited on the electrodes under an applied potential. TEM images reveal that lead dendrites are developed by the fast protrusion of lead branches in the electrolyte and tip splitting. And, the fast growing tip of the dendritic branch is composed of polycrystalline nanograins and it develops into a single crystalline branch eventually. This study demonstrated unique electrochemical growth of single crystal dendrites through nucleation, aggregation, alignment and attachment of randomly oriented small grains. Additionally, we found the lead concentration in the electrolyte drastically influences the morphology of dendritic formation.

Authors:
 [1];  [1];  [1];  [2]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1624670
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 3; Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Science & technology - other topics; Batteries; Imaging techniques; Synthesis and processing

Citation Formats

Sun, Minghua, Liao, Hong-Gang, Niu, Kaiyang, and Zheng, Haimei. Structural and Morphological Evolution of Lead Dendrites during Electrochemical Migration. United States: N. p., 2013. Web. doi:10.1038/srep03227.
Sun, Minghua, Liao, Hong-Gang, Niu, Kaiyang, & Zheng, Haimei. Structural and Morphological Evolution of Lead Dendrites during Electrochemical Migration. United States. https://doi.org/10.1038/srep03227
Sun, Minghua, Liao, Hong-Gang, Niu, Kaiyang, and Zheng, Haimei. Fri . "Structural and Morphological Evolution of Lead Dendrites during Electrochemical Migration". United States. https://doi.org/10.1038/srep03227. https://www.osti.gov/servlets/purl/1624670.
@article{osti_1624670,
title = {Structural and Morphological Evolution of Lead Dendrites during Electrochemical Migration},
author = {Sun, Minghua and Liao, Hong-Gang and Niu, Kaiyang and Zheng, Haimei},
abstractNote = {The electrochemical deposition and dissolution of lead on gold electrodes immersed in an aqueous solution of lead nitrate were studied in situ using a biasing liquid cell by transmission electron microscopy (TEM). We investigate in real time the growth mechanisms of lead dendrites as deposited on the electrodes under an applied potential. TEM images reveal that lead dendrites are developed by the fast protrusion of lead branches in the electrolyte and tip splitting. And, the fast growing tip of the dendritic branch is composed of polycrystalline nanograins and it develops into a single crystalline branch eventually. This study demonstrated unique electrochemical growth of single crystal dendrites through nucleation, aggregation, alignment and attachment of randomly oriented small grains. Additionally, we found the lead concentration in the electrolyte drastically influences the morphology of dendritic formation.},
doi = {10.1038/srep03227},
journal = {Scientific Reports},
number = 1,
volume = 3,
place = {United States},
year = {Fri Nov 15 00:00:00 EST 2013},
month = {Fri Nov 15 00:00:00 EST 2013}
}

Works referenced in this record:

Structure of Electrodeposited Lead Dendrites
journal, January 1965

  • Ogburn, F.; Bechtoldt, C.; Morris, J. B.
  • Journal of The Electrochemical Society, Vol. 112, Issue 6
  • DOI: 10.1149/1.2423609

Dendrites, Viscous Fingers, and the Theory of Pattern Formation
journal, March 1989


Dendritic growth with interfacial energy anisotropy
journal, April 1991


Dendritic growth
journal, January 1994


Solidification microstructures: recent developments, future directions
journal, January 2000


In-situ Dendrite/Metallic Glass Matrix Composites: A Review
journal, August 2013


Effect of growth parameters on habit and morphology of electrodeposited lead dendrites
journal, March 1973


Dendritic Gold Nanowire Growth Observed in Liquid with Transmission Electron Microscopy
journal, June 2013


A general mechanism of polycrystalline growth
journal, August 2004

  • Gránásy, László; Pusztai, Tamás; Börzsönyi, Tamás
  • Nature Materials, Vol. 3, Issue 9
  • DOI: 10.1038/nmat1190

Double-interface growth mode of fractal silver trees within replacement reaction
journal, October 2006

  • Fang, Jixiang; Ma, Xiaoni; Cai, Hanhui
  • Applied Physics Letters, Vol. 89, Issue 17
  • DOI: 10.1063/1.2364057

Three-dimensional Dendritic Pt Nanostructures: Sonoelectrochemical Synthesis and Electrochemical Applications
journal, September 2008

  • Shen, Qingming; Jiang, Liping; Zhang, Hui
  • The Journal of Physical Chemistry C, Vol. 112, Issue 42
  • DOI: 10.1021/jp8060043

Evolution of Single Crystalline Dendrites from Nanoparticles through Oriented Attachment
journal, January 2005

  • Cheng, Yao; Wang, Yuansheng; Chen, Daqin
  • The Journal of Physical Chemistry B, Vol. 109, Issue 2
  • DOI: 10.1021/jp0460240

Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface
journal, July 2003

  • Williamson, M. J.; Tromp, R. M.; Vereecken, P. M.
  • Nature Materials, Vol. 2, Issue 8
  • DOI: 10.1038/nmat944

In Situ Transmission Electron Microscopy of Lead Dendrites and Lead Ions in Aqueous Solution
journal, June 2012

  • White, Edward R.; Singer, Scott B.; Augustyn, Veronica
  • ACS Nano, Vol. 6, Issue 7
  • DOI: 10.1021/nn3017469

A Study of Nano Materials and Their Reactions in Liquid Using in situ Wet Cell TEM Technology
journal, December 2012

  • Chen, Xin; Zhou, Lihui; Wang, Ping
  • Chinese Journal of Chemistry, Vol. 30, Issue 12
  • DOI: 10.1002/cjoc.201201036

Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories
journal, June 2009


Real-Time Imaging of Pt3Fe Nanorod Growth in Solution
journal, May 2012


Direct in Situ Determination of the Mechanisms Controlling Nanoparticle Nucleation and Growth
journal, September 2012

  • Woehl, Taylor J.; Evans, James E.; Arslan, Ilke
  • ACS Nano, Vol. 6, Issue 10
  • DOI: 10.1021/nn303371y

Imaging Nanobubbles in Water with Scanning Transmission Electron Microscopy
journal, April 2011

  • White, Edward R.; Mecklenburg, Matthew; Singer, Scott B.
  • Applied Physics Express, Vol. 4, Issue 5
  • DOI: 10.1143/APEX.4.055201

Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials
journal, April 2013


Direct in situ observation of the electron-driven synthesis of Ag filaments on α-Ag2WO4 crystals
journal, April 2013

  • Longo, E.; Cavalcante, L. S.; Volanti, D. P.
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01676

Effect of high magnetic fields on fractal growth of lead metal-leaves
journal, March 1993


In Situ Transmission Electron Microscopy of Lead Dendrites and Lead Ions in Aqueous Solution
journal, June 2012

  • White, Edward R.; Singer, Scott B.; Augustyn, Veronica
  • ACS Nano, Vol. 6, Issue 7
  • DOI: 10.1021/nn3017469

Direct in Situ Determination of the Mechanisms Controlling Nanoparticle Nucleation and Growth
journal, September 2012

  • Woehl, Taylor J.; Evans, James E.; Arslan, Ilke
  • ACS Nano, Vol. 6, Issue 10
  • DOI: 10.1021/nn303371y

A general mechanism of polycrystalline growth
journal, August 2004

  • Gránásy, László; Pusztai, Tamás; Börzsönyi, Tamás
  • Nature Materials, Vol. 3, Issue 9
  • DOI: 10.1038/nmat1190

Direct in situ observation of the electron-driven synthesis of Ag filaments on α-Ag2WO4 crystals
journal, April 2013

  • Longo, E.; Cavalcante, L. S.; Volanti, D. P.
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01676

Electrically Induced Morphological Instabilities in Free Dendrite Growth
journal, July 1998


Dendrites Regularized by Spatially Homogeneous Time-Periodic Forcing
journal, October 1999


Real-Time Imaging of Pt3Fe Nanorod Growth in Solution
journal, May 2012


Works referencing / citing this record:

Electro–Chemo–Mechanical Issues at the Interfaces in Solid‐State Lithium Metal Batteries
journal, April 2019


Developing High-Performance Lithium Metal Anode in Liquid Electrolytes: Challenges and Progress
journal, March 2018


In Situ Transmission Electron Microscopy Studies of Electrochemical Reaction Mechanisms in Rechargeable Batteries
journal, June 2019


Investigating materials formation with liquid-phase and cryogenic TEM
journal, June 2016


A functional SrF 2 coated separator enabling a robust and dendrite-free solid electrolyte interphase on a lithium metal anode
journal, January 2019

  • Li, Xing; Liu, Yang; Pan, Yong
  • Journal of Materials Chemistry A, Vol. 7, Issue 37
  • DOI: 10.1039/c9ta06908a

Liquid cell transmission electron microscopy and its applications
journal, January 2020

  • Pu, Shengda; Gong, Chen; Robertson, Alex W.
  • Royal Society Open Science, Vol. 7, Issue 1
  • DOI: 10.1098/rsos.191204

Opportunities and challenges in liquid cell electron microscopy
journal, December 2015


Current Density Distribution in Electrochemical Cells with Small Cell Heights and Coplanar Thin Electrodes as Used in ec-S/TEM Cell Geometries
journal, January 2019

  • Stricker, Elizabeth A.; Ke, Xinyou; Wainright, Jesse S.
  • Journal of The Electrochemical Society, Vol. 166, Issue 4
  • DOI: 10.1149/2.0211904jes

Automated analysis of evolving interfaces during in situ electron microscopy
journal, February 2016

  • Schneider, Nicholas M.; Park, Jeung Hun; Norton, Michael M.
  • Advanced Structural and Chemical Imaging, Vol. 2, Issue 1
  • DOI: 10.1186/s40679-016-0016-z

Nanoscale evolution of interface morphology during electrodeposition
journal, December 2017

  • Schneider, Nicholas M.; Park, Jeung Hun; Grogan, Joseph M.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/s41467-017-02364-9

Structural and electronic analysis of the atomic scale nucleation of Ag on α-Ag2WO4 induced by electron irradiation
journal, June 2014

  • Andrés, Juan; Gracia, Lourdes; Gonzalez-Navarrete, Patricio
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep05391

In-situ Multimodal Imaging and Spectroscopy of Mg Electrodeposition at Electrode-Electrolyte Interfaces
journal, February 2017

  • Wu, Yimin A.; Yin, Zuwei; Farmand, Maryam
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep42527

Liquid cell transmission electron microscopy and its applications
journal, January 2020

  • Pu, Shengda; Gong, Chen; Robertson, Alex W.
  • Royal Society Open Science, Vol. 7, Issue 1
  • DOI: 10.1098/rsos.191204