DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer’s disease model

Abstract

Many risk genes for the development of Alzheimer’s disease (AD) are exclusively or highly expressed in myeloid cells. Microglia are dependent on colony-stimulating factor 1 receptor (CSF1R) signaling for their survival. We designed and synthesized a highly selective brain-penetrant CSF1R inhibitor (PLX5622) allowing for extended and specific microglial elimination, preceding and during pathology development. We find that in the 5xFAD mouse model of AD, plaques fail to form in the parenchymal space following microglial depletion, except in areas containing surviving microglia. Instead, Aβ deposits in cortical blood vessels reminiscent of cerebral amyloid angiopathy. Altered gene expression in the 5xFAD hippocampus is also reversed by the absence of microglia. Transcriptional analyses of the residual plaque-forming microglia show they exhibit a disease-associated microglia profile. Collectively, we describe the structure, formulation, and efficacy of PLX5622, which allows for sustained microglial depletion and identify roles of microglia in initiating plaque pathogenesis.

Authors:
 [1];  [2];  [1];  [1];  [2];  [2];  [2];  [2];  [2];  [1];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2] more »; ORCiD logo [2];  [1] « less
  1. Univ. of California, Irvine, CA (United States)
  2. Plexxikon Inc, Berkeley, CA, (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1624183
Grant/Contract Number:  
AC02-05CH11231; R01NS083801; R01AG056768; P50AG016573; AARF-16–442762; F31AG059367; T32AG00096
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 10; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; Science & Technology - Other Topics

Citation Formats

Spangenberg, Elizabeth, Severson, Paul L., Hohsfield, Lindsay A., Crapser, Joshua, Zhang, Jiazhong, Burton, Elizabeth A., Zhang, Ying, Spevak, Wayne, Lin, Jack, Phan, Nicole Y., Habets, Gaston, Rymar, Andrey, Tsang, Garson, Walters, Jason, Nespi, Marika, Singh, Parmveer, Broome, Stephanie, Ibrahim, Prabha, Zhang, Chao, Bollag, Gideon, West, Brian L., and Green, Kim N. Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer’s disease model. United States: N. p., 2019. Web. doi:10.1038/s41467-019-11674-z.
Spangenberg, Elizabeth, Severson, Paul L., Hohsfield, Lindsay A., Crapser, Joshua, Zhang, Jiazhong, Burton, Elizabeth A., Zhang, Ying, Spevak, Wayne, Lin, Jack, Phan, Nicole Y., Habets, Gaston, Rymar, Andrey, Tsang, Garson, Walters, Jason, Nespi, Marika, Singh, Parmveer, Broome, Stephanie, Ibrahim, Prabha, Zhang, Chao, Bollag, Gideon, West, Brian L., & Green, Kim N. Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer’s disease model. United States. https://doi.org/10.1038/s41467-019-11674-z
Spangenberg, Elizabeth, Severson, Paul L., Hohsfield, Lindsay A., Crapser, Joshua, Zhang, Jiazhong, Burton, Elizabeth A., Zhang, Ying, Spevak, Wayne, Lin, Jack, Phan, Nicole Y., Habets, Gaston, Rymar, Andrey, Tsang, Garson, Walters, Jason, Nespi, Marika, Singh, Parmveer, Broome, Stephanie, Ibrahim, Prabha, Zhang, Chao, Bollag, Gideon, West, Brian L., and Green, Kim N. Wed . "Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer’s disease model". United States. https://doi.org/10.1038/s41467-019-11674-z. https://www.osti.gov/servlets/purl/1624183.
@article{osti_1624183,
title = {Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer’s disease model},
author = {Spangenberg, Elizabeth and Severson, Paul L. and Hohsfield, Lindsay A. and Crapser, Joshua and Zhang, Jiazhong and Burton, Elizabeth A. and Zhang, Ying and Spevak, Wayne and Lin, Jack and Phan, Nicole Y. and Habets, Gaston and Rymar, Andrey and Tsang, Garson and Walters, Jason and Nespi, Marika and Singh, Parmveer and Broome, Stephanie and Ibrahim, Prabha and Zhang, Chao and Bollag, Gideon and West, Brian L. and Green, Kim N.},
abstractNote = {Many risk genes for the development of Alzheimer’s disease (AD) are exclusively or highly expressed in myeloid cells. Microglia are dependent on colony-stimulating factor 1 receptor (CSF1R) signaling for their survival. We designed and synthesized a highly selective brain-penetrant CSF1R inhibitor (PLX5622) allowing for extended and specific microglial elimination, preceding and during pathology development. We find that in the 5xFAD mouse model of AD, plaques fail to form in the parenchymal space following microglial depletion, except in areas containing surviving microglia. Instead, Aβ deposits in cortical blood vessels reminiscent of cerebral amyloid angiopathy. Altered gene expression in the 5xFAD hippocampus is also reversed by the absence of microglia. Transcriptional analyses of the residual plaque-forming microglia show they exhibit a disease-associated microglia profile. Collectively, we describe the structure, formulation, and efficacy of PLX5622, which allows for sustained microglial depletion and identify roles of microglia in initiating plaque pathogenesis.},
doi = {10.1038/s41467-019-11674-z},
journal = {Nature Communications},
number = 1,
volume = 10,
place = {United States},
year = {2019},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 42 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Plaque-distal microglia contain aggregated Aβ. a–e 15-month-old 3xTg-AD mice were stained for dense core deposits with Thio-S (in green), and immunolabeled for microglia (IBA1 in red) and macrophage lysosomes (CD68 in blue; a, c, and e) with zoomed image (b) of Thio-S+ material within microglia and within lysosomes,more » separately. Scale bars= 20 μm for a, e 5 μm for b, 10 μm for c. d, f Three-dimensional reconstruction of microglia (IBA1 in red), the microglial lysosome (CD68 in purple), and fibrillar Aβ (Thio-S in green), demonstrating the localization of Aβ to the microglial lysosome in non-plaque associated microglia. Scale bars= 7 μm. gj 5xFAD animals stained for dense-core deposits (Thio-S in green) and immunolabeled for microglia (IBA1 in red; g and i), with zoomed images (h, j) demonstrating Thio-S+ aggregates in microglial cell bodies in 4- and 7-month-old 5xFAD mice. Scale bars= 40 μm for g, i 10 μm for h, j« less

Save / Share:

Works referenced in this record:

Persistent Amyloidosis following Suppression of Aβ Production in a Transgenic Model of Alzheimer Disease
journal, November 2005


Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-β pathology
journal, February 2016

  • Spangenberg, Elizabeth E.; Lee, Rafael J.; Najafi, Allison R.
  • Brain, Vol. 139, Issue 4
  • DOI: 10.1093/brain/aww016

Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer’s disease amyloid plaques
journal, June 2015

  • Gowrishankar, Swetha; Yuan, Peng; Wu, Yumei
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 28
  • DOI: 10.1073/pnas.1510329112

Colony-Stimulating Factor 1 Receptor Signaling Is Necessary for Microglia Viability, Unmasking a Microglia Progenitor Cell in the Adult Brain
journal, April 2014


Assessment of TREM2 rs75932628 association with Alzheimer's disease in a population-based sample: the Cache County Study
journal, December 2013


STAR: ultrafast universal RNA-seq aligner
journal, October 2012


Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids
journal, December 2011

  • Rademakers, Rosa; Baker, Matt; Nicholson, Alexandra M.
  • Nature Genetics, Vol. 44, Issue 2
  • DOI: 10.1038/ng.1027

Neurotoxic reactive astrocytes are induced by activated microglia
journal, January 2017

  • Liddelow, Shane A.; Guttenplan, Kevin A.; Clarke, Laura E.
  • Nature, Vol. 541, Issue 7638
  • DOI: 10.1038/nature21029

Genetic Cell Ablation Reveals Clusters of Local Self-Renewing Microglia in the Mammalian Central Nervous System
journal, July 2015


Formation and maintenance of Alzheimer's disease β-amyloid plaques in the absence of microglia
journal, October 2009

  • Grathwohl, Stefan A.; Kälin, Roland E.; Bolmont, Tristan
  • Nature Neuroscience, Vol. 12, Issue 11
  • DOI: 10.1038/nn.2432

Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers
journal, February 2013


Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer's disease
journal, March 2010

  • Fuhrmann, Martin; Bittner, Tobias; Jung, Christian K. E.
  • Nature Neuroscience, Vol. 13, Issue 4
  • DOI: 10.1038/nn.2511

Deposition of Monomeric, Not Oligomeric, Aβ Mediates Growth of Alzheimer's Disease Amyloid Plaques in Human Brain Preparations
journal, August 1999

  • Tseng, Bertrand P.; Esler, William P.; Clish, Clary B.
  • Biochemistry, Vol. 38, Issue 32
  • DOI: 10.1021/bi990718v

Characteristic microglial features in patients with hereditary diffuse leukoencephalopathy with spheroids: Microgliopathy in HDLS
journal, September 2016

  • Tada, Mari; Konno, Takuya; Tada, Masayoshi
  • Annals of Neurology, Vol. 80, Issue 4
  • DOI: 10.1002/ana.24754

Altered microglial response to Aβ plaques in APPPS1-21 mice heterozygous for TREM2
journal, January 2014

  • Ulrich, Jason D.; Finn, Mary; Wang, Yaming
  • Molecular Neurodegeneration, Vol. 9, Issue 1
  • DOI: 10.1186/1750-1326-9-20

The involvement of microglia in Alzheimer's disease: a new dog in the fight
journal, December 2018

  • Moore, Zachery; Taylor, Juliet M.; Crack, Peter J.
  • British Journal of Pharmacology, Vol. 176, Issue 18
  • DOI: 10.1111/bph.14546

Elimination of Microglia Improves Functional Outcomes Following Extensive Neuronal Loss in the Hippocampus
journal, July 2015


Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer’s-like pathology
journal, January 2016

  • Olmos-Alonso, Adrian; Schetters, Sjoerd T. T.; Sri, Sarmi
  • Brain, Vol. 139, Issue 3
  • DOI: 10.1093/brain/awv379

Complement and microglia mediate early synapse loss in Alzheimer mouse models
journal, March 2016


A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease
journal, June 2018


A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease
journal, June 2017

  • Huang, Kuan-lin; Marcora, Edoardo; Pimenova, Anna A.
  • Nature Neuroscience, Vol. 20, Issue 8
  • DOI: 10.1038/nn.4587

Imaging and cerebrospinal fluid biomarkers in early preclinical alzheimer disease
journal, July 2016

  • Vlassenko, Andrei G.; McCue, Lena; Jasielec, Mateusz S.
  • Annals of Neurology, Vol. 80, Issue 3
  • DOI: 10.1002/ana.24719

The endocytic pathway in microglia during health, aging and Alzheimer’s disease
journal, December 2016

  • Solé-Domènech, Santiago; Cruz, Dana L.; Capetillo-Zarate, Estibaliz
  • Ageing Research Reviews, Vol. 32
  • DOI: 10.1016/j.arr.2016.07.002

Forebrain microglia from wild-type but not adult 5xFAD mice prevent amyloid-β plaque formation in organotypic hippocampal slice cultures
journal, September 2015

  • Hellwig, Sabine; Masuch, Annette; Nestel, Sigrun
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep14624

Amyloid β Protein Starting Pyroglutamate at Position 3 Is a Major Component of the Amyloid Deposits in the Alzheimer's Disease Brain
journal, September 2000

  • Harigaya, Yasuo; Saido, Takaomi C.; Eckman, Christopher B.
  • Biochemical and Biophysical Research Communications, Vol. 276, Issue 2
  • DOI: 10.1006/bbrc.2000.3490

Uptake, Degradation, and Release of Fibrillar and Soluble Forms of Alzheimer's Amyloid β-Peptide by Microglial Cells
journal, November 1999

  • Chung, Haeyong; Brazil, Melanie I.; Soe, Thwe Thwe
  • Journal of Biological Chemistry, Vol. 274, Issue 45
  • DOI: 10.1074/jbc.274.45.32301

Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE
journal, January 2019

  • Parhizkar, Samira; Arzberger, Thomas; Brendel, Matthias
  • Nature Neuroscience, Vol. 22, Issue 2
  • DOI: 10.1038/s41593-018-0296-9

Aggregation of the amyloid precursor protein within degenerating neurons and dystrophic neurites in alzheimer's disease
journal, June 1992


Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease
journal, December 2017

  • Venegas, Carmen; Kumar, Sathish; Franklin, Bernardo S.
  • Nature, Vol. 552, Issue 7685
  • DOI: 10.1038/nature25158

A limited capacity for microglial repopulation in the adult brain
journal, October 2018

  • Najafi, Allison R.; Crapser, Joshua; Jiang, Shan
  • Glia, Vol. 66, Issue 11
  • DOI: 10.1002/glia.23477

Pittsburgh Compound B Imaging and Prediction of Progression From Cognitive Normality to Symptomatic Alzheimer Disease
journal, December 2009


Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease
journal, April 2011

  • Naj, Adam C.; Jun, Gyungah; Beecham, Gary W.
  • Nature Genetics, Vol. 43, Issue 5
  • DOI: 10.1038/ng.801

Triple-Transgenic Model of Alzheimer's Disease with Plaques and Tangles
journal, July 2003


edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
journal, November 2009


Replacement of microglia in the aged brain reverses cognitive, synaptic, and neuronal deficits in mice: XXXX
journal, October 2018

  • Elmore, Monica R. P.; Hohsfield, Lindsay A.; Kramár, Enikö A.
  • Aging Cell, Vol. 17, Issue 6
  • DOI: 10.1111/acel.12832

Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide
journal, November 2009

  • Hu, X.; Crick, S. L.; Bu, G.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 48
  • DOI: 10.1073/pnas.0911281106

limma powers differential expression analyses for RNA-sequencing and microarray studies
journal, January 2015

  • Ritchie, Matthew E.; Phipson, Belinda; Wu, Di
  • Nucleic Acids Research, Vol. 43, Issue 7
  • DOI: 10.1093/nar/gkv007

The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote
journal, April 2013

  • Liao, Yang; Smyth, Gordon K.; Shi, Wei
  • Nucleic Acids Research, Vol. 41, Issue 10
  • DOI: 10.1093/nar/gkt214

ST101 induces a novel 17kDa APP cleavage that precludes Aβ generation in vivo
journal, March 2011

  • Green, Kim N.; Khashwji, Hasan; Estrada, Tatiana
  • Annals of Neurology, Vol. 69, Issue 5
  • DOI: 10.1002/ana.22325

The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases
journal, September 2017


Microglial Dysfunction and Defective  -Amyloid Clearance Pathways in Aging Alzheimer's Disease Mice
journal, August 2008


Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques
journal, January 2015

  • Condello, Carlo; Yuan, Peng; Schain, Aaron
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7176

Structure-Guided Blockade of CSF1R Kinase in Tenosynovial Giant-Cell Tumor
journal, July 2015

  • Tap, William D.; Wainberg, Zev A.; Anthony, Stephen P.
  • New England Journal of Medicine, Vol. 373, Issue 5
  • DOI: 10.1056/NEJMoa1411366

Young microglia restore amyloid plaque clearance of aged microglia
journal, December 2016


Acidic pH promotes the formation of toxic fibrils from β-amyloid peptide
journal, March 2001


TREM2 Variants in Alzheimer's Disease
journal, January 2013

  • Guerreiro, Rita; Wojtas, Aleksandra; Bras, Jose
  • New England Journal of Medicine, Vol. 368, Issue 2
  • DOI: 10.1056/NEJMoa1211851

Lack of BACE1 S-palmitoylation reduces amyloid burden and mitigates memory deficits in transgenic mouse models of Alzheimer’s disease
journal, October 2017

  • Andrew, Robert J.; Fernandez, Celia G.; Stanley, Molly
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 45
  • DOI: 10.1073/pnas.1708568114

Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission
journal, December 2011

  • Pascual, O.; Ben Achour, S.; Rostaing, P.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 4
  • DOI: 10.1073/pnas.1111098109

Alzheimer’s Disease Risk Genes and Mechanisms of Disease Pathogenesis
journal, January 2015


A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease
journal, June 2017


TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques
journal, April 2016

  • Wang, Yaming; Ulland, Tyler K.; Ulrich, Jason D.
  • Journal of Experimental Medicine, Vol. 213, Issue 5
  • DOI: 10.1084/jem.20151948

Autosomal-dominant Alzheimer's disease: a review and proposal for the prevention of Alzheimer's disease
journal, January 2010

  • Bateman, Randall J.; Aisen, Paul S.; De Strooper, Bart
  • Alzheimer's Research & Therapy, Vol. 3, Issue 1
  • DOI: 10.1186/alzrt59

Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice
journal, August 2015

  • Dagher, Nabil N.; Najafi, Allison R.; Kayala, Kara M. Neely
  • Journal of Neuroinflammation, Vol. 12, Issue 1
  • DOI: 10.1186/s12974-015-0366-9

LC3-Associated Endocytosis Facilitates β-Amyloid Clearance and Mitigates Neurodegeneration in Murine Alzheimer’s Disease
journal, July 2019


Microglial repopulation resolves inflammation and promotes brain recovery after injury: RICE et al.
journal, March 2017

  • Rice, Rachel A.; Pham, Jason; Lee, Rafael J.
  • Glia, Vol. 65, Issue 6
  • DOI: 10.1002/glia.23135

Microglial Cells Contribute to Endogenous Brain Defenses after Acute Neonatal Focal Stroke
journal, September 2011


Modeling neurological disease using human stem cell-derived microglia-like cells transplanted into rodent brains
journal, January 2020


Neurotoxic reactive astrocytes are induced by activated microglia
text, January 2017

  • Liddelow, Sa; Guttenplan, Ka; Clarke, Le
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.13305

Formation and maintenance of Alzheimer's disease beta-amyloid plaques in the absence of microglia
text, January 2009

  • Grathwohl, S. A.; Kälin, R. E.; Bolmont, T.
  • Nature Publishing Group
  • DOI: 10.5167/uzh-23695

Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE
text, January 2019


LC3-Associated Endocytosis Facilitates β-Amyloid Clearance and Mitigates Neurodegeneration in Murine Alzheimer’s Disease
journal, December 2020


limma powers differential expression analyses for RNA-sequencing and microarray studies
text, January 2015

  • Ritchie, Matthew E.; Phipson, Belinda; Wu, Di
  • Oxford University Press
  • DOI: 10.5167/uzh-155268

Works referencing / citing this record:

Microwave-assisted synthesis of 7-azaindoles via iron-catalyzed cyclization of an o -haloaromatic amine with terminal alkynes
journal, January 2019

  • Le, Yi; Yang, Zhisong; Chen, Yumei
  • RSC Advances, Vol. 9, Issue 68
  • DOI: 10.1039/c9ra08742g

Oxidized cholesterol species as signaling molecules in the brain: diabetes and Alzheimer’s disease
journal, November 2019

  • Weigel, Thaddeus K.; Kulas, Joshua A.; Ferris, Heather A.
  • Neuronal Signaling, Vol. 3, Issue 4
  • DOI: 10.1042/ns20190068

Death by microglia
journal, October 2019

  • Kemal, Shahrnaz; Vassar, Robert
  • Journal of Experimental Medicine, Vol. 216, Issue 11
  • DOI: 10.1084/jem.20191536

Microglial depletion and repopulation in brain slice culture normalizes sensitized proinflammatory signaling
journal, January 2020

  • Coleman, Leon G.; Zou, Jian; Crews, Fulton T.
  • Journal of Neuroinflammation, Vol. 17, Issue 1
  • DOI: 10.1186/s12974-019-1678-y

Mitigation of helium irradiation-induced brain injury by microglia depletion
journal, May 2020

  • Allen, Barrett D.; Syage, Amber R.; Maroso, Mattia
  • Journal of Neuroinflammation, Vol. 17, Issue 1
  • DOI: 10.1186/s12974-020-01790-9

Rh-CSF1 attenuates neuroinflammation via the CSF1R/PLCG2/PKCε pathway in a rat model of neonatal HIE
journal, June 2020


Attenuation of neuroinflammation reverses Adriamycin-induced cognitive impairments
journal, November 2019

  • Allen, Barrett D.; Apodaca, Lauren A.; Syage, Amber R.
  • Acta Neuropathologica Communications, Vol. 7, Issue 1
  • DOI: 10.1186/s40478-019-0838-8

Interleukin‐12/23 deficiency differentially affects pathology in male and female Alzheimer's disease‐like mice
journal, January 2020


The Amyloid-Tau-Neuroinflammation Axis in the Context of Cerebral Amyloid Angiopathy
journal, December 2019

  • Cisternas, Pablo; Taylor, Xavier; A. Lasagna-Reeves, Cristian
  • International Journal of Molecular Sciences, Vol. 20, Issue 24
  • DOI: 10.3390/ijms20246319