DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation

Abstract

A new paradigm for cellulose depolymerization by fungi focuses on an oxidative mechanism involving cellobiose dehydrogenases (CDH) and copper-dependent lytic polysaccharide monooxygenases (LPMO); however, mechanistic studies have been hampered by the lack of structural information regarding CDH. CDH contains a haem-binding cytochrome (CYT) connected via a flexible linker to a flavin-dependent dehydrogenase (DH). Electrons are generated from cellobiose oxidation catalysed by DH and shuttled via CYT to LPMO. Here we present structural analyses that provide a comprehensive picture of CDH conformers, which govern the electron transfer between redox centres. Using structure-based site-directed mutagenesis, rapid kinetics analysis and molecular docking, we demonstrate that flavin-to-haem interdomain electron transfer (IET) is enabled by a haem propionate group and that rapid IET requires a closed CDH state in which the propionate is tightly enfolded by DH. Following haem reduction, CYT reduces LPMO to initiate oxygen activation at the copper centre and subsequent cellulose depolymerization.

Authors:
 [1];  [2];  [1];  [2];  [2];  [2];  [3];  [2];  [1]
  1. KTH Royal Inst. of Technology, Stockholm (Sweden). School of Biotechnology; Karolinska Inst., Stockholm (Sweden). Dept. of Medical Biochemistry
  2. Univ. of Natural Resources and Life Sciences, Vienna (Austria). Food Biotechnology Lab. Dept. of Food Science and Technology
  3. Karolinska Inst., Stockholm (Sweden). Dept. of Cell and Molecular Biology; European Molecular Biology Lab. (EMBL), Hamburg (Germany); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Centre for Structural Systems Biology
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1623985
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 6; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; Science & Technology - Other Topics

Citation Formats

Tan, Tien-Chye, Kracher, Daniel, Gandini, Rosaria, Sygmund, Christoph, Kittl, Roman, Haltrich, Dietmar, Hällberg, B. Martin, Ludwig, Roland, and Divne, Christina. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation. United States: N. p., 2015. Web. doi:10.1038/ncomms8542.
Tan, Tien-Chye, Kracher, Daniel, Gandini, Rosaria, Sygmund, Christoph, Kittl, Roman, Haltrich, Dietmar, Hällberg, B. Martin, Ludwig, Roland, & Divne, Christina. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation. United States. https://doi.org/10.1038/ncomms8542
Tan, Tien-Chye, Kracher, Daniel, Gandini, Rosaria, Sygmund, Christoph, Kittl, Roman, Haltrich, Dietmar, Hällberg, B. Martin, Ludwig, Roland, and Divne, Christina. Tue . "Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation". United States. https://doi.org/10.1038/ncomms8542. https://www.osti.gov/servlets/purl/1623985.
@article{osti_1623985,
title = {Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation},
author = {Tan, Tien-Chye and Kracher, Daniel and Gandini, Rosaria and Sygmund, Christoph and Kittl, Roman and Haltrich, Dietmar and Hällberg, B. Martin and Ludwig, Roland and Divne, Christina},
abstractNote = {A new paradigm for cellulose depolymerization by fungi focuses on an oxidative mechanism involving cellobiose dehydrogenases (CDH) and copper-dependent lytic polysaccharide monooxygenases (LPMO); however, mechanistic studies have been hampered by the lack of structural information regarding CDH. CDH contains a haem-binding cytochrome (CYT) connected via a flexible linker to a flavin-dependent dehydrogenase (DH). Electrons are generated from cellobiose oxidation catalysed by DH and shuttled via CYT to LPMO. Here we present structural analyses that provide a comprehensive picture of CDH conformers, which govern the electron transfer between redox centres. Using structure-based site-directed mutagenesis, rapid kinetics analysis and molecular docking, we demonstrate that flavin-to-haem interdomain electron transfer (IET) is enabled by a haem propionate group and that rapid IET requires a closed CDH state in which the propionate is tightly enfolded by DH. Following haem reduction, CYT reduces LPMO to initiate oxygen activation at the copper centre and subsequent cellulose depolymerization.},
doi = {10.1038/ncomms8542},
journal = {Nature Communications},
number = 1,
volume = 6,
place = {United States},
year = {Tue Jul 07 00:00:00 EDT 2015},
month = {Tue Jul 07 00:00:00 EDT 2015}
}

Works referenced in this record:

Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism
journal, December 2013

  • Kim, S.; Stahlberg, J.; Sandgren, M.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 1
  • DOI: 10.1073/pnas.1316609111

Novel enzymes for the degradation of cellulose
journal, January 2012

  • Horn, Svein; Vaaje-Kolstad, Gustav; Westereng, Bjørge
  • Biotechnology for Biofuels, Vol. 5, Issue 1, Article No. 45
  • DOI: 10.1186/1754-6834-5-45

Fungal Cellulases
journal, January 2015

  • Payne, Christina M.; Knott, Brandon C.; Mayes, Heather B.
  • Chemical Reviews, Vol. 115, Issue 3
  • DOI: 10.1021/cr500351c

Crystal Structure and Computational Characterization of the Lytic Polysaccharide Monooxygenase GH61D from the Basidiomycota Fungus Phanerochaete chrysosporium
journal, March 2013

  • Wu, Miao; Beckham, Gregg T.; Larsson, Anna M.
  • Journal of Biological Chemistry, Vol. 288, Issue 18
  • DOI: 10.1074/jbc.m113.459396

Another look at the interaction between mitochondrial cytochrome c and flavocytochrome b 2
journal, April 2011


BALBES : a molecular-replacement pipeline
journal, December 2007

  • Long, Fei; Vagin, Alexei A.; Young, Paul
  • Acta Crystallographica Section D Biological Crystallography, Vol. 64, Issue 1
  • DOI: 10.1107/S0907444907050172

Stimulation of Lignocellulosic Biomass Hydrolysis by Proteins of Glycoside Hydrolase Family 61 Structure and Function of a Large, Enigmatic Family
journal, April 2010

  • Harris, Paul; Welner, Ditte; McFarland, K.
  • Biochemistry, Vol. 49, Issue 15, p. 3305-3316
  • DOI: 10.1021/bi100009p

The HADDOCK web server for data-driven biomolecular docking
journal, April 2010

  • de Vries, Sjoerd J.; van Dijk, Marc; Bonvin, Alexandre M. J. J.
  • Nature Protocols, Vol. 5, Issue 5
  • DOI: 10.1038/nprot.2010.32

An Oxidative Enzyme Boosting the Enzymatic Conversion of Recalcitrant Polysaccharides
journal, October 2010

  • Vaaje-Kolstad, Gustav; Westereng, Bjørge; Horn, Svein J.
  • Science, Vol. 330, Issue 6001, p. 219-222
  • DOI: 10.1126/science.1192231

Natural engineering principles of electron tunnelling in biological oxidation–reduction
journal, November 1999

  • Page, Christopher C.; Moser, Christopher C.; Chen, Xiaoxi
  • Nature, Vol. 402, Issue 6757
  • DOI: 10.1038/46972

Automated main-chain model building by template matching and iterative fragment extension
journal, December 2002

  • Terwilliger, Thomas C.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 59, Issue 1
  • DOI: 10.1107/S0907444902018036

Heterologous production of cellobiose dehydrogenases from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina and their effect on saccharification of wheat straw
journal, September 2012

  • Turbe-Doan, Annick; Arfi, Yonathan; Record, Eric
  • Applied Microbiology and Biotechnology, Vol. 97, Issue 11
  • DOI: 10.1007/s00253-012-4355-y

Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay
journal, January 2012

  • Kittl, Roman; Kracher, Daniel; Burgstaller, Daniel
  • Biotechnology for Biofuels, Vol. 5, Issue 1
  • DOI: 10.1186/1754-6834-5-79

WeNMR: Structural Biology on the Grid
journal, November 2012

  • Wassenaar, Tsjerk A.; van Dijk, Marc; Loureiro-Ferreira, Nuno
  • Journal of Grid Computing, Vol. 10, Issue 4
  • DOI: 10.1007/s10723-012-9246-z

Structural Characterization of Flexible Proteins Using Small-Angle X-ray Scattering
journal, May 2007

  • Bernadó, Pau; Mylonas, Efstratios; Petoukhov, Maxim V.
  • Journal of the American Chemical Society, Vol. 129, Issue 17
  • DOI: 10.1021/ja069124n

Improved methods for building protein models in electron density maps and the location of errors in these models
journal, March 1991

  • Jones, T. A.; Zou, J. Y.; Cowan, S. W.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 47, Issue 2, p. 110-119
  • DOI: 10.1107/s0108767390010224

Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants
journal, December 1993


Oxidative Cleavage of Cellulose by Fungal Copper-Dependent Polysaccharide Monooxygenases
journal, December 2011

  • Beeson, William T.; Phillips, Christopher M.; Cate, Jamie H. D.
  • Journal of the American Chemical Society, Vol. 134, Issue 2
  • DOI: 10.1021/ja210657t

Cellulose oxidation and bleaching processes based on recombinant Myriococcum thermophilum cellobiose dehydrogenase
journal, January 2013


Characterization of the Two Neurospora crassa Cellobiose Dehydrogenases and Their Connection to Oxidative Cellulose Degradation
journal, June 2012

  • Sygmund, Christoph; Kracher, Daniel; Scheiblbrandner, Stefan
  • Applied and Environmental Microbiology, Vol. 78, Issue 17
  • DOI: 10.1128/aem.01503-12

Heme Electron Transfer in Peroxidases: The Propionate e-Pathway
journal, October 2008

  • Guallar, Victor
  • The Journal of Physical Chemistry B, Vol. 112, Issue 42
  • DOI: 10.1021/jp806435d

Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase
journal, January 2002

  • Martin Hallberg, B.; Henriksson, Gunnar; Pettersson, Göran
  • Journal of Molecular Biology, Vol. 315, Issue 3
  • DOI: 10.1006/jmbi.2001.5246

Biological pretreatment with a cellobiose dehydrogenase-deficient strain of Trametes versicolor enhances the biofuel potential of canola straw
journal, November 2011


A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenase
journal, January 2000


Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase
journal, January 2002

  • Martin Hallberg, B.; Henriksson, Gunnar; Pettersson, Göran
  • Journal of Molecular Biology, Vol. 315, Issue 3
  • DOI: 10.1006/jmbi.2001.5246

A family of starch-active polysaccharide monooxygenases
journal, September 2014

  • Vu, V. V.; Beeson, W. T.; Span, E. A.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 38
  • DOI: 10.1073/pnas.1408090111

MolProbity : all-atom structure validation for macromolecular crystallography
journal, December 2009

  • Chen, Vincent B.; Arendall, W. Bryan; Headd, Jeffrey J.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 1
  • DOI: 10.1107/S0907444909042073

Coot model-building tools for molecular graphics
journal, November 2004

  • Emsley, Paul; Cowtan, Kevin
  • Acta Crystallographica Section D Biological Crystallography, Vol. 60, Issue 12, p. 2126-2132
  • DOI: 10.1107/S0907444904019158

Cellulose oxidation and bleaching processes based on recombinant Myriococcum thermophilum cellobiose dehydrogenase
journal, January 2013


Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes
journal, January 2013

  • Levasseur, Anthony; Drula, Elodie; Lombard, Vincent
  • Biotechnology for Biofuels, Vol. 6, Issue 1, Article No. 41
  • DOI: 10.1186/1754-6834-6-41

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production
journal, February 2007

  • Himmel, M. E.; Ding, S.-Y.; Johnson, D. K.
  • Science, Vol. 315, Issue 5813, p. 804-807
  • DOI: 10.1126/science.1137016

Sustainable bioenergy production from marginal lands in the US Midwest
journal, January 2013

  • Gelfand, Ilya; Sahajpal, Ritvik; Zhang, Xuesong
  • Nature, Vol. 493, Issue 7433
  • DOI: 10.1038/nature11811

Cellobiose Dehydrogenase and a Copper-Dependent Polysaccharide Monooxygenase Potentiate Cellulose Degradation by Neurospora crassa
journal, December 2011

  • Phillips, Christopher M.; Beeson, William T.; Cate, Jamie H.
  • ACS Chemical Biology, Vol. 6, Issue 12, p. 1399-1406
  • DOI: 10.1021/cb200351y

Cloning, sequence analysis and heterologous expression in Pichia pastoris of a gene encoding a thermostable cellobiose dehydrogenase from Myriococcum thermophilum
journal, June 2008

  • Zámocký, Marcel; Schümann, Christina; Sygmund, Christoph
  • Protein Expression and Purification, Vol. 59, Issue 2
  • DOI: 10.1016/j.pep.2008.02.007

Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7
journal, June 2008

  • Langer, Gerrit; Cohen, Serge X.; Lamzin, Victor S.
  • Nature Protocols, Vol. 3, Issue 7
  • DOI: 10.1038/nprot.2008.91

Heterologous production of cellobiose dehydrogenases from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina and their effect on saccharification of wheat straw
journal, September 2012

  • Turbe-Doan, Annick; Arfi, Yonathan; Record, Eric
  • Applied Microbiology and Biotechnology, Vol. 97, Issue 11
  • DOI: 10.1007/s00253-012-4355-y

Cellobiose dehydrogenase (cellobiose oxidase) from Phanerochaete chrysosporium as a wood-degrading enzyme. Studies on cellulose, xylan and synthetic lignin
journal, January 1995

  • Henriksson, G.; Ander, P.; Pettersson, B.
  • Applied Microbiology and Biotechnology, Vol. 42, Issue 5
  • DOI: 10.1007/BF00171963

Another look at the interaction between mitochondrial cytochrome c and flavocytochrome b 2
journal, April 2011


Fungal Cellulases
journal, January 2015

  • Payne, Christina M.; Knott, Brandon C.; Mayes, Heather B.
  • Chemical Reviews, Vol. 115, Issue 3
  • DOI: 10.1021/cr500351c

Mechanism of the Reductive Half-reaction in Cellobiose Dehydrogenase
journal, December 2002

  • Hallberg, B. Martin; Henriksson, Gunnar; Pettersson, Göran
  • Journal of Biological Chemistry, Vol. 278, Issue 9
  • DOI: 10.1074/jbc.m210961200

Linking Crystallographic Model and Data Quality
journal, May 2012


Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism
journal, December 2013

  • Kim, S.; Stahlberg, J.; Sandgren, M.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 1
  • DOI: 10.1073/pnas.1316609111

PHENIX: a comprehensive Python-based system for macromolecular structure solution.
text, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.45787

Experimental phasing with SHELXC / D / E : combining chain tracing with density modification
journal, March 2010

  • Sheldrick, George M.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/s0907444909038360

Oxidative Cleavage of Cellulose by Fungal Copper-Dependent Polysaccharide Monooxygenases
journal, December 2011

  • Beeson, William T.; Phillips, Christopher M.; Cate, Jamie H. D.
  • Journal of the American Chemical Society, Vol. 134, Issue 2
  • DOI: 10.1021/ja210657t

Novel enzymes for the degradation of cellulose
journal, January 2012

  • Horn, Svein; Vaaje-Kolstad, Gustav; Westereng, Bjørge
  • Biotechnology for Biofuels, Vol. 5, Issue 1, Article No. 45
  • DOI: 10.1186/1754-6834-5-45

The HADDOCK web server for data-driven biomolecular docking
journal, April 2010

  • de Vries, Sjoerd J.; van Dijk, Marc; Bonvin, Alexandre M. J. J.
  • Nature Protocols, Vol. 5, Issue 5
  • DOI: 10.1038/nprot.2010.32

Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases
journal, May 2014

  • Forsberg, Z.; Mackenzie, A. K.; Sorlie, M.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 23
  • DOI: 10.1073/pnas.1402771111

Oxidoreductive Cellulose Depolymerization by the Enzymes Cellobiose Dehydrogenase and Glycoside Hydrolase 61
journal, August 2011

  • Langston, James A.; Shaghasi, Tarana; Abbate, Eric
  • Applied and Environmental Microbiology, Vol. 77, Issue 19, p. 7007-7015
  • DOI: 10.1128/aem.05815-11

PRIMUS: a Windows PC-based system for small-angle scattering data analysis
journal, September 2003

  • Konarev, Petr V.; Volkov, Vladimir V.; Sokolova, Anna V.
  • Journal of Applied Crystallography, Vol. 36, Issue 5, p. 1277-1282
  • DOI: 10.1107/S0021889803012779

Structural Characterization of Flexible Proteins Using Small-Angle X-ray Scattering
journal, May 2007

  • Bernadó, Pau; Mylonas, Efstratios; Petoukhov, Maxim V.
  • Journal of the American Chemical Society, Vol. 129, Issue 17
  • DOI: 10.1021/ja069124n

Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components
journal, August 2011

  • Quinlan, R. J.; Sweeney, M. D.; Lo Leggio, L.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 37, p. 15079-15084
  • DOI: 10.1073/pnas.1105776108

Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production
journal, February 2007

  • Himmel, M. E.; Ding, S.-Y.; Johnson, D. K.
  • Science, Vol. 315, Issue 5813, p. 804-807
  • DOI: 10.1126/science.1137016

X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution
journal, August 2007

  • Putnam, Christopher D.; Hammel, Michal; Hura, Greg L.
  • Quarterly Reviews of Biophysics, Vol. 40, Issue 3
  • DOI: 10.1017/S0033583507004635

Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation
journal, April 2014

  • Agger, J. W.; Isaksen, T.; Varnai, A.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 17
  • DOI: 10.1073/pnas.1323629111

Cellulose Surface Degradation by a Lytic Polysaccharide Monooxygenase and Its Effect on Cellulase Hydrolytic Efficiency
journal, October 2014

  • Eibinger, Manuel; Ganner, Thomas; Bubner, Patricia
  • Journal of Biological Chemistry, Vol. 289, Issue 52
  • DOI: 10.1074/jbc.M114.602227

Natural engineering principles of electron tunnelling in biological oxidation–reduction
journal, November 1999

  • Page, Christopher C.; Moser, Christopher C.; Chen, Xiaoxi
  • Nature, Vol. 402, Issue 6757
  • DOI: 10.1038/46972

Oxidation: An important enzyme reaction in fungal degradation of cellulose
journal, December 1974


Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7
journal, June 2008

  • Langer, Gerrit; Cohen, Serge X.; Lamzin, Victor S.
  • Nature Protocols, Vol. 3, Issue 7
  • DOI: 10.1038/nprot.2008.91

Cellobiose Dehydrogenase – A Flavocytochrome from Wood-Degrading, Phytopathogenic and Saprotropic Fungi
journal, June 2006


Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS)
journal, July 2009

  • Hura, Greg L.; Menon, Angeli L.; Hammel, Michal
  • Nature Methods, Vol. 6, Issue 8
  • DOI: 10.1038/nmeth.1353

Structural Basis for Substrate Targeting and Catalysis by Fungal Polysaccharide Monooxygenases
journal, June 2012

  • Li, Xin; Beeson, William T.; Phillips, Christopher M.
  • Structure, Vol. 20, Issue 6, p. 1051-1061
  • DOI: 10.1016/j.str.2012.04.002

An Oxidative Enzyme Boosting the Enzymatic Conversion of Recalcitrant Polysaccharides
journal, October 2010

  • Vaaje-Kolstad, Gustav; Westereng, Bjørge; Horn, Svein J.
  • Science, Vol. 330, Issue 6001, p. 219-222
  • DOI: 10.1126/science.1192231

Structural Basis for Substrate Targeting and Catalysis by Fungal Polysaccharide Monooxygenases
journal, June 2012

  • Li, Xin; Beeson, William T.; Phillips, Christopher M.
  • Structure, Vol. 20, Issue 6, p. 1051-1061
  • DOI: 10.1016/j.str.2012.04.002

Biological pretreatment with a cellobiose dehydrogenase-deficient strain of Trametes versicolor enhances the biofuel potential of canola straw
journal, November 2011


Heme Electron Transfer in Peroxidases: The Propionate e-Pathway
journal, October 2008

  • Guallar, Victor
  • The Journal of Physical Chemistry B, Vol. 112, Issue 42
  • DOI: 10.1021/jp806435d

Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering
journal, February 2015


HADDOCK versus HADDOCK: New features and performance of HADDOCK2.0 on the CAPRI targets
journal, September 2007

  • de Vries, Sjoerd J.; van Dijk, Aalt D. J.; Krzeminski, Mickaël
  • Proteins: Structure, Function, and Bioinformatics, Vol. 69, Issue 4
  • DOI: 10.1002/prot.21723

WeNMR: Structural Biology on the Grid
journal, November 2012

  • Wassenaar, Tsjerk A.; van Dijk, Marc; Loureiro-Ferreira, Nuno
  • Journal of Grid Computing, Vol. 10, Issue 4
  • DOI: 10.1007/s10723-012-9246-z

Oxidation: An important enzyme reaction in fungal degradation of cellulose
journal, December 1974


Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation
journal, April 2014

  • Agger, J. W.; Isaksen, T.; Varnai, A.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 17
  • DOI: 10.1073/pnas.1323629111

New developments in the ATSAS program package for small-angle scattering data analysis
journal, March 2012

  • Petoukhov, Maxim V.; Franke, Daniel; Shkumatov, Alexander V.
  • Journal of Applied Crystallography, Vol. 45, Issue 2
  • DOI: 10.1107/S0021889812007662

REFMAC 5 for the refinement of macromolecular crystal structures
journal, March 2011

  • Murshudov, Garib N.; Skubák, Pavol; Lebedev, Andrey A.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S0907444911001314

Studies of cellulose binding by cellobiose dehydrogenase and a comparison with cellobiohydrolase 1
journal, June 1997

  • Henriksson, Gunnar; Salumets, Andres; Divne, Christina
  • Biochemical Journal, Vol. 324, Issue 3
  • DOI: 10.1042/bj3240833

Cellobiose Dehydrogenase and a Copper-Dependent Polysaccharide Monooxygenase Potentiate Cellulose Degradation by Neurospora crassa
journal, December 2011

  • Phillips, Christopher M.; Beeson, William T.; Cate, Jamie H.
  • ACS Chemical Biology, Vol. 6, Issue 12, p. 1399-1406
  • DOI: 10.1021/cb200351y

Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay
journal, January 2012

  • Kittl, Roman; Kracher, Daniel; Burgstaller, Daniel
  • Biotechnology for Biofuels, Vol. 5, Issue 1
  • DOI: 10.1186/1754-6834-5-79

Cellobiose Dehydrogenase – A Flavocytochrome from Wood-Degrading, Phytopathogenic and Saprotropic Fungi
journal, June 2006


Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases
journal, May 2014

  • Forsberg, Z.; Mackenzie, A. K.; Sorlie, M.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 23
  • DOI: 10.1073/pnas.1402771111

A family of starch-active polysaccharide monooxygenases
journal, September 2014

  • Vu, V. V.; Beeson, W. T.; Span, E. A.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 38
  • DOI: 10.1073/pnas.1408090111

Cellobiose dehydrogenase is essential for wood invasion and nonessential for kraft pulp delignification by Trametes versicolor
journal, November 2001


Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components
journal, August 2011

  • Quinlan, R. J.; Sweeney, M. D.; Lo Leggio, L.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 37, p. 15079-15084
  • DOI: 10.1073/pnas.1105776108

Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa
journal, December 2009

  • Tian, Chaoguang; Beeson, William T.; Iavarone, Anthony T.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 52
  • DOI: 10.1073/pnas.0906810106

Phaser crystallographic software
journal, July 2007

  • McCoy, Airlie J.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.
  • Journal of Applied Crystallography, Vol. 40, Issue 4
  • DOI: 10.1107/S0021889807021206

Stimulation of Lignocellulosic Biomass Hydrolysis by Proteins of Glycoside Hydrolase Family 61 Structure and Function of a Large, Enigmatic Family
journal, April 2010

  • Harris, Paul; Welner, Ditte; McFarland, K.
  • Biochemistry, Vol. 49, Issue 15, p. 3305-3316
  • DOI: 10.1021/bi100009p

Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes
journal, January 2013

  • Levasseur, Anthony; Drula, Elodie; Lombard, Vincent
  • Biotechnology for Biofuels, Vol. 6, Issue 1, Article No. 41
  • DOI: 10.1186/1754-6834-6-41

Works referencing / citing this record:

Multiplicity of enzymatic functions in the CAZy AA3 family
journal, February 2018

  • Sützl, Leander; Laurent, Christophe V. F. P.; Abrera, Annabelle T.
  • Applied Microbiology and Biotechnology, Vol. 102, Issue 6
  • DOI: 10.1007/s00253-018-8784-0

Biocatalytic Oxidation Reactions: A Chemist's Perspective
journal, July 2018

  • Dong, JiaJia; Fernández-Fueyo, Elena; Hollmann, Frank
  • Angewandte Chemie International Edition, Vol. 57, Issue 30
  • DOI: 10.1002/anie.201800343

Discovery, activity and characterisation of an AA10 lytic polysaccharide oxygenase from the shipworm symbiont Teredinibacter turnerae
journal, September 2019

  • Fowler, Claire. A.; Sabbadin, Federico; Ciano, Luisa
  • Biotechnology for Biofuels, Vol. 12, Issue 1
  • DOI: 10.1186/s13068-019-1573-x

Direct Electron Transfer of Dehydrogenases for Development of 3rd Generation Biosensors and Enzymatic Fuel Cells
journal, April 2018

  • Bollella, Paolo; Gorton, Lo; Antiochia, Riccarda
  • Sensors, Vol. 18, Issue 5
  • DOI: 10.3390/s18051319

Molecular and catalytic properties of fungal extracellular cellobiose dehydrogenase produced in prokaryotic and eukaryotic expression systems
journal, February 2017


Isolation of homogeneous polysaccharide monooxygenases from fungal sources and investigation of their synergism with cellulases when acting on cellulose
journal, May 2016


Plant–necrotroph co-transcriptome networks illuminate a metabolic battlefield
journal, May 2019

  • Zhang, Wei; Corwin, Jason A.; Copeland, Daniel Harrison
  • eLife, Vol. 8
  • DOI: 10.7554/elife.44279

Molecular mechanism of lytic polysaccharide monooxygenases
text, January 2018


Polysaccharide monooxygenase-catalyzed oxidation of cellulose to glucuronic acid-containing cello-oligosaccharides
journal, February 2019


Direct Electron Transfer of Dehydrogenases for Development of 3rd Generation Biosensors and Enzymatic Fuel Cells
journal, April 2018

  • Bollella, Paolo; Gorton, Lo; Antiochia, Riccarda
  • Sensors, Vol. 18, Issue 5
  • DOI: 10.3390/s18051319

Polysaccharide oxidation by lytic polysaccharide monooxygenase is enhanced by engineered cellobiose dehydrogenase
journal, October 2019

  • Kracher, Daniel; Forsberg, Zarah; Bissaro, Bastien
  • The FEBS Journal, Vol. 287, Issue 5
  • DOI: 10.1111/febs.15067

Molecular and catalytic properties of fungal extracellular cellobiose dehydrogenase produced in prokaryotic and eukaryotic expression systems
journal, February 2017


Insights into the mechanism(s) of digestion of crystalline cellulose by plant class C GH9 endoglucanases
journal, July 2019


On the functional characterization of lytic polysaccharide monooxygenases (LPMOs)
journal, March 2019

  • Eijsink, Vincent G. H.; Petrovic, Dejan; Forsberg, Zarah
  • Biotechnology for Biofuels, Vol. 12, Issue 1
  • DOI: 10.1186/s13068-019-1392-0

Myceliophthora thermophila M77 utilizes hydrolytic and oxidative mechanisms to deconstruct biomass
journal, November 2016

  • dos Santos, Hévila Brognaro; Bezerra, Thaís Milena Souza; Pradella, José G. C.
  • AMB Express, Vol. 6, Issue 1
  • DOI: 10.1186/s13568-016-0276-y

Direct Electron Transfer of Enzymes Facilitated by Cytochromes
journal, January 2019


Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme
journal, April 2016

  • Cannella, D.; Möllers, K. B.; Frigaard, N. -U.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11134

A fungal family of lytic polysaccharide monooxygenase-like copper proteins
journal, January 2020

  • Labourel, Aurore; Frandsen, Kristian E. H.; Zhang, Feng
  • Nature Chemical Biology, Vol. 16, Issue 3
  • DOI: 10.1038/s41589-019-0438-8

Polysaccharide monooxygenase-catalyzed oxidation of cellulose to glucuronic acid-containing cello-oligosaccharides
journal, February 2019


Sequence and Structural Analysis of AA9 and AA10 LPMOs: An Insight into the Basis of Substrate Specificity and Regioselectivity
journal, September 2019

  • Zhou, Xiaoli; Qi, Xiaohua; Huang, Hongxia
  • International Journal of Molecular Sciences, Vol. 20, Issue 18
  • DOI: 10.3390/ijms20184594

Reactivity of O 2 versus H 2 O 2 with polysaccharide monooxygenases
journal, April 2018

  • Hangasky, John A.; Iavarone, Anthony T.; Marletta, Michael A.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 19
  • DOI: 10.1073/pnas.1801153115

Myceliophthora thermophila M77 utilizes hydrolytic and oxidative mechanisms to deconstruct biomass
journal, November 2016

  • dos Santos, Hévila Brognaro; Bezerra, Thaís Milena Souza; Pradella, José G. C.
  • AMB Express, Vol. 6, Issue 1
  • DOI: 10.1186/s13568-016-0276-y

On the functional characterization of lytic polysaccharide monooxygenases (LPMOs)
journal, March 2019

  • Eijsink, Vincent G. H.; Petrovic, Dejan; Forsberg, Zarah
  • Biotechnology for Biofuels, Vol. 12, Issue 1
  • DOI: 10.1186/s13068-019-1392-0

Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme
journal, April 2016

  • Cannella, D.; Möllers, K. B.; Frigaard, N. -U.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11134

Multiplicity of enzymatic functions in the CAZy AA3 family
journal, February 2018

  • Sützl, Leander; Laurent, Christophe V. F. P.; Abrera, Annabelle T.
  • Applied Microbiology and Biotechnology, Vol. 102, Issue 6
  • DOI: 10.1007/s00253-018-8784-0

Heterogeneity in the Histidine-brace Copper Coordination Sphere in Auxiliary Activity Family 10 (AA10) Lytic Polysaccharide Monooxygenases
journal, April 2016

  • Chaplin, Amanda K.; Wilson, Michael T.; Hough, Michael A.
  • Journal of Biological Chemistry, Vol. 291, Issue 24, p. 12838-12850
  • DOI: 10.1074/jbc.m116.722447

Biokatalytische Oxidationsreaktionen - aus der Sicht eines Chemikers
journal, July 2018

  • Dong, JiaJia; Fernández-Fueyo, Elena; Hollmann, Frank
  • Angewandte Chemie, Vol. 130, Issue 30
  • DOI: 10.1002/ange.201800343

Biocatalytic Oxidation Reactions: A Chemist's Perspective
journal, July 2018

  • Dong, JiaJia; Fernández-Fueyo, Elena; Hollmann, Frank
  • Angewandte Chemie International Edition, Vol. 57, Issue 30
  • DOI: 10.1002/anie.201800343

How to break down crystalline cellulose
journal, May 2016


Molecular Mechanisms of Oxygen Activation and Hydrogen Peroxide Formation in Lytic Polysaccharide Monooxygenases
journal, April 2019


The GMC superfamily of oxidoreductases revisited: analysis and evolution of fungal GMC oxidoreductases
journal, May 2019

  • Sützl, Leander; Foley, Gabriel; Gillam, Elizabeth M. J.
  • Biotechnology for Biofuels, Vol. 12, Issue 1
  • DOI: 10.1186/s13068-019-1457-0

Single-domain flavoenzymes trigger lytic polysaccharide monooxygenases for oxidative degradation of cellulose
journal, June 2016

  • Garajova, Sona; Mathieu, Yann; Beccia, Maria Rosa
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep28276

The H2O2-dependent activity of a fungal lytic polysaccharide monooxygenase investigated with a turbidimetric assay
journal, March 2020


Extracellular electron transfer systems fuel cellulose oxidative degradation
journal, April 2016


The Pyrroloquinoline-Quinone-Dependent Pyranose Dehydrogenase from Coprinopsis cinerea Drives Lytic Polysaccharide Monooxygenase Action
journal, June 2018

  • Várnai, Anikó; Umezawa, Kiwamu; Yoshida, Makoto
  • Applied and Environmental Microbiology, Vol. 84, Issue 11
  • DOI: 10.1128/aem.00156-18

Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1 differ in substrate preference and reducing agent specificity
journal, August 2016

  • Frommhagen, Matthias; Koetsier, Martijn J.; Westphal, Adrie H.
  • Biotechnology for Biofuels, Vol. 9, Issue 1
  • DOI: 10.1186/s13068-016-0594-y

Activation of bacterial lytic polysaccharide monooxygenases with cellobiose dehydrogenase: Activation of Bacterial LPMOs with CDH
journal, September 2016

  • Loose, Jennifer S. M.; Forsberg, Zarah; Kracher, Daniel
  • Protein Science, Vol. 25, Issue 12
  • DOI: 10.1002/pro.3043

Studying Direct Electron Transfer by Site‐Directed Immobilization of Cellobiose Dehydrogenase
journal, September 2018

  • Meneghello, Marta; Al‐Lolage, Firas A.; Ma, Su
  • ChemElectroChem, Vol. 6, Issue 3
  • DOI: 10.1002/celc.201801503

Regioselectivity of oxidation by a polysaccharide monooxygenase from Chaetomium thermophilum
journal, June 2018


Conserved white-rot enzymatic mechanism for wood decay in the Basidiomycota genus Pycnoporus
journal, April 2020


The Pyrroloquinoline-Quinone-Dependent Pyranose Dehydrogenase from Coprinopsis cinerea Drives Lytic Polysaccharide Monooxygenase Action
journal, June 2018

  • Várnai, Anikó; Umezawa, Kiwamu; Yoshida, Makoto
  • Applied and Environmental Microbiology, Vol. 84, Issue 11
  • DOI: 10.1128/aem.00156-18

Sequence and Structural Analysis of AA9 and AA10 LPMOs: An Insight into the Basis of Substrate Specificity and Regioselectivity
journal, September 2019

  • Zhou, Xiaoli; Qi, Xiaohua; Huang, Hongxia
  • International Journal of Molecular Sciences, Vol. 20, Issue 18
  • DOI: 10.3390/ijms20184594

Learning from microbial strategies for polysaccharide degradation
journal, February 2016

  • Hemsworth, Glyn R.; Déjean, Guillaume; Davies, Gideon J.
  • Biochemical Society Transactions, Vol. 44, Issue 1
  • DOI: 10.1042/bst20150180

The H2O2-dependent activity of a fungal lytic polysaccharide monooxygenase investigated with a turbidimetric assay
journal, March 2020


Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass
journal, September 2018

  • Bissaro, Bastien; Várnai, Anikó; Røhr, Åsmund K.
  • Microbiology and Molecular Biology Reviews, Vol. 82, Issue 4
  • DOI: 10.1128/mmbr.00029-18

Distinct Substrate Specificities and Electron-Donating Systems of Fungal Lytic Polysaccharide Monooxygenases
journal, May 2018

  • Frommhagen, Matthias; Westphal, Adrie H.; van Berkel, Willem J. H.
  • Frontiers in Microbiology, Vol. 9
  • DOI: 10.3389/fmicb.2018.01080

Lytic polysaccharide monooxygenases and other oxidative enzymes are abundantly secreted by Aspergillus nidulans grown on different starches
journal, September 2016

  • Nekiunaite, Laura; Arntzen, Magnus Ø.; Svensson, Birte
  • Biotechnology for Biofuels, Vol. 9, Issue 1
  • DOI: 10.1186/s13068-016-0604-0

Activity, stability and 3-D structure of the Cu( ii ) form of a chitin-active lytic polysaccharide monooxygenase from Bacillus amyloliquefaciens
journal, January 2016

  • Gregory, Rebecca C.; Hemsworth, Glyn R.; Turkenburg, Johan P.
  • Dalton Transactions, Vol. 45, Issue 42, p. 16904-16912
  • DOI: 10.1039/c6dt02793h

Salt-responsive lytic polysaccharide monooxygenases from the mangrove fungus Pestalotiopsis sp. NCi6
journal, May 2016


Direct Electron Transfer of Enzymes Facilitated by Cytochromes
journal, December 2018


Crystal Structure of the Catalytic and Cytochrome b Domains in a Eukaryotic Pyrroloquinoline Quinone-Dependent Dehydrogenase
journal, October 2019

  • Takeda, Kouta; Ishida, Takuya; Yoshida, Makoto
  • Applied and Environmental Microbiology, Vol. 85, Issue 24
  • DOI: 10.1128/aem.01692-19

Influence of Lytic Polysaccharide Monooxygenase Active Site Segments on Activity and Affinity
journal, December 2019

  • Laurent, Christophe V. F. P.; Sun, Peicheng; Scheiblbrandner, Stefan
  • International Journal of Molecular Sciences, Vol. 20, Issue 24
  • DOI: 10.3390/ijms20246219

Single-domain flavoenzymes trigger lytic polysaccharide monooxygenases for oxidative degradation of cellulose
journal, June 2016

  • Garajova, Sona; Mathieu, Yann; Beccia, Maria Rosa
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep28276

Lytic polysaccharide monooxygenases and other oxidative enzymes are abundantly secreted by Aspergillus nidulans grown on different starches
journal, September 2016

  • Nekiunaite, Laura; Arntzen, Magnus Ø.; Svensson, Birte
  • Biotechnology for Biofuels, Vol. 9, Issue 1
  • DOI: 10.1186/s13068-016-0604-0

Molecular mechanism of lytic polysaccharide monooxygenases
journal, January 2018

  • Hedegård, Erik Donovan; Ryde, Ulf
  • Chemical Science, Vol. 9, Issue 15
  • DOI: 10.1039/c8sc00426a

Salt-responsive lytic polysaccharide monooxygenases from the mangrove fungus Pestalotiopsis sp. NCi6
journal, May 2016


Interactions of a fungal lytic polysaccharide monooxygenase with β-glucan substrates and cellobiose dehydrogenase
journal, May 2016

  • Courtade, Gaston; Wimmer, Reinhard; Røhr, Åsmund K.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 21
  • DOI: 10.1073/pnas.1602566113

Direct Electron Transfer of Enzymes Facilitated by Cytochromes
journal, December 2018


X-ray structure of the direct electron transfer-type FAD glucose dehydrogenase catalytic subunit complexed with a hitchhiker protein
journal, August 2019

  • Yoshida, Hiromi; Kojima, Katsuhiro; Shiota, Masaki
  • Acta Crystallographica Section D Structural Biology, Vol. 75, Issue 9
  • DOI: 10.1107/s2059798319010878

Influence of Lytic Polysaccharide Monooxygenase Active Site Segments on Activity and Affinity
journal, December 2019

  • Laurent, Christophe V. F. P.; Sun, Peicheng; Scheiblbrandner, Stefan
  • International Journal of Molecular Sciences, Vol. 20, Issue 24
  • DOI: 10.3390/ijms20246219

Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1 differ in substrate preference and reducing agent specificity
journal, August 2016

  • Frommhagen, Matthias; Koetsier, Martijn J.; Westphal, Adrie H.
  • Biotechnology for Biofuels, Vol. 9, Issue 1
  • DOI: 10.1186/s13068-016-0594-y