skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Theory of highly efficient multiexciton generation in type-II nanorods

Abstract

Multiexciton generation, by which more than a single electron–hole pair is generated on optical excitation, is a promising paradigm for pushing the efficiency of solar cells beyond the Shockley–Queisser limit of 31%. Utilizing this paradigm, however, requires the onset energy of multiexciton generation to be close to twice the band gap energy and the efficiency to increase rapidly above this onset. This challenge remains unattainable even using confined nanocrystals, nanorods or nanowires. Here, we show how both goals can be achieved in a nanorod heterostructure with type-II band offsets. Using pseudopotential atomistic calculation on a model type-II semiconductor heterostructure we predict the optimal conditions for controlling multiexciton generation efficiencies at twice the band gap energy. For a finite band offset, this requires a sharp interface along with a reduction of the exciton cooling and may enable a route for breaking the Shockley–Queisser limit.

Authors:
 [1];  [2];  [3];  [4]
  1. Tel Aviv Univ., Ramat Aviv (Israel). The Sackler Faculty of Exact Sciences. School of Chemistry; Tel Aviv Univ., Ramat Aviv (Israel). The Raymond and Beverly Sackler Center for Computational Molecular and Materials Science
  2. Hebrew Univ. of Jerusalem (Israel). Inst. of Chemistry. Fritz Haber Center for Molecular Dynamics
  3. Univ. of California, Los Angeles, CA (United States). Dept. of Chemistry
  4. Tel Aviv Univ., Ramat Aviv (Israel). The Raymond and Beverly Sackler Center for Computational Molecular and Materials Science. Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division. Dept. of Chemistry
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1623859
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 7; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Science & Technology - Other Topics

Citation Formats

Eshet, Hagai, Baer, Roi, Neuhauser, Daniel, and Rabani, Eran. Theory of highly efficient multiexciton generation in type-II nanorods. United States: N. p., 2016. Web. doi:10.1038/ncomms13178.
Eshet, Hagai, Baer, Roi, Neuhauser, Daniel, & Rabani, Eran. Theory of highly efficient multiexciton generation in type-II nanorods. United States. doi:10.1038/ncomms13178.
Eshet, Hagai, Baer, Roi, Neuhauser, Daniel, and Rabani, Eran. Tue . "Theory of highly efficient multiexciton generation in type-II nanorods". United States. doi:10.1038/ncomms13178. https://www.osti.gov/servlets/purl/1623859.
@article{osti_1623859,
title = {Theory of highly efficient multiexciton generation in type-II nanorods},
author = {Eshet, Hagai and Baer, Roi and Neuhauser, Daniel and Rabani, Eran},
abstractNote = {Multiexciton generation, by which more than a single electron–hole pair is generated on optical excitation, is a promising paradigm for pushing the efficiency of solar cells beyond the Shockley–Queisser limit of 31%. Utilizing this paradigm, however, requires the onset energy of multiexciton generation to be close to twice the band gap energy and the efficiency to increase rapidly above this onset. This challenge remains unattainable even using confined nanocrystals, nanorods or nanowires. Here, we show how both goals can be achieved in a nanorod heterostructure with type-II band offsets. Using pseudopotential atomistic calculation on a model type-II semiconductor heterostructure we predict the optimal conditions for controlling multiexciton generation efficiencies at twice the band gap energy. For a finite band offset, this requires a sharp interface along with a reduction of the exciton cooling and may enable a route for breaking the Shockley–Queisser limit.},
doi = {10.1038/ncomms13178},
journal = {Nature Communications},
number = 1,
volume = 7,
place = {United States},
year = {2016},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion
journal, May 2004


Carrier Multiplication in InAs Nanocrystal Quantum Dots with an Onset Defined by the Energy Conservation Limit
journal, November 2007

  • Schaller, Richard D.; Pietryga, Jeffrey M.; Klimov, Victor I.
  • Nano Letters, Vol. 7, Issue 11
  • DOI: 10.1021/nl072046x

Detailed-balance power conversion limits of nanocrystal-quantum-dot solar cells in the presence of carrier multiplication
journal, September 2006

  • Klimov, Victor I.
  • Applied Physics Letters, Vol. 89, Issue 12
  • DOI: 10.1063/1.2356314

Efficiency of Multiexciton Generation in Colloidal Nanostructures
journal, March 2013

  • Shabaev, Andrew; Hellberg, C. Stephen; Efros, Alexander L.
  • Accounts of Chemical Research, Vol. 46, Issue 6
  • DOI: 10.1021/ar300283j

Aspect Ratio Dependence of Auger Recombination and Carrier Multiplication in PbSe Nanorods
journal, February 2013

  • Padilha, Lazaro A.; Stewart, John T.; Sandberg, Richard L.
  • Nano Letters, Vol. 13, Issue 3
  • DOI: 10.1021/nl304426y

Recent Advances in Singlet Fission
journal, April 2013


Shape and Temperature Dependence of Hot Carrier Relaxation Dynamics in Spherical and Elongated CdSe Quantum Dots
journal, May 2011

  • Chen, Liangliang; Bao, Hua; Tan, Taizhi
  • The Journal of Physical Chemistry C, Vol. 115, Issue 23
  • DOI: 10.1021/jp201408m

Carrier multiplication in bulk and nanocrystalline semiconductors: Mechanism, efficiency, and interest for solar cells
journal, March 2010


Multiple Exciton Generation in Colloidal Silicon Nanocrystals
journal, August 2007

  • Beard, Matthew C.; Knutsen, Kelly P.; Yu, Pingrong
  • Nano Letters, Vol. 7, Issue 8
  • DOI: 10.1021/nl071486l

Comparison of Carrier Multiplication Yields in PbS and PbSe Nanocrystals: The Role of Competing Energy-Loss Processes
journal, January 2012

  • Stewart, John T.; Padilha, Lazaro A.; Qazilbash, M. Mumtaz
  • Nano Letters, Vol. 12, Issue 2
  • DOI: 10.1021/nl203367m

High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states
journal, November 2005

  • Schaller, Richard D.; Agranovich, Vladimir M.; Klimov, Victor I.
  • Nature Physics, Vol. 1, Issue 3
  • DOI: 10.1038/nphys151

Numerical analysis of carrier multiplication mechanisms in nanocrystalline and bulk forms of PbSe and PbS
journal, October 2012


Theory of multiexciton generation in semiconductor nanocrystals
journal, August 2010


Multiple Exciton Collection in a Sensitized Photovoltaic System
journal, September 2010


Comparing Multiple Exciton Generation in Quantum Dots To Impact Ionization in Bulk Semiconductors: Implications for Enhancement of Solar Energy Conversion
journal, August 2010

  • Beard, Matthew C.; Midgett, Aaron G.; Hanna, Mark C.
  • Nano Letters, Vol. 10, Issue 8
  • DOI: 10.1021/nl101490z

Multiple exciton generation in nano-crystals revisited: Consistent calculation of the yield based on pump-probe spectroscopy
journal, July 2013

  • Karki, Khadga J.; Ma, Fei; Zheng, Kaibo
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02287

Size Dependence of the Multiple Exciton Generation Rate in CdSe Quantum Dots
journal, March 2011

  • Lin, Zhibin; Franceschetti, Alberto; Lusk, Mark T.
  • ACS Nano, Vol. 5, Issue 4
  • DOI: 10.1021/nn200141f

Impact Ionization Can Explain Carrier Multiplication in PbSe Quantum Dots
journal, October 2006

  • Franceschetti, A.; An, J. M.; Zunger, A.
  • Nano Letters, Vol. 6, Issue 10
  • DOI: 10.1021/nl0612401

Carrier Multiplication in Semiconductor Nanocrystals: Influence of Size, Shape, and Composition
journal, March 2013

  • Padilha, Lazaro A.; Stewart, John T.; Sandberg, Richard L.
  • Accounts of Chemical Research, Vol. 46, Issue 6
  • DOI: 10.1021/ar300228x

The Electronic Structure of CdSe/CdS Core/Shell Seeded Nanorods: Type-I or Quasi-Type-II?
journal, November 2013

  • Eshet, Hagai; Grünwald, Michael; Rabani, Eran
  • Nano Letters, Vol. 13, Issue 12
  • DOI: 10.1021/nl402722n

Can Impact Excitation Explain Efficient Carrier Multiplication in Carbon Nanotube Photodiodes?
journal, September 2010


Role of impact ionization in multiple exciton generation in PbSe nanocrystals
journal, May 2006


Communication: Biexciton generation rates in CdSe nanorods are length independent
journal, February 2013

  • Baer, Roi; Rabani, Eran
  • The Journal of Chemical Physics, Vol. 138, Issue 5
  • DOI: 10.1063/1.4790600

Generation of Multiple Excitons in PbSe and CdSe Quantum Dots by Direct Photoexcitation: First-Principles Calculations on Small PbSe and CdSe Clusters
journal, November 2008

  • Isborn, Christine M.; Kilina, Svetlana V.; Li, Xiaosong
  • The Journal of Physical Chemistry C, Vol. 112, Issue 47
  • DOI: 10.1021/jp807283j

Distribution of Multiexciton Generation Rates in CdSe and InAs Nanocrystals
journal, December 2008


Self-Averaging Stochastic Kohn-Sham Density-Functional Theory
journal, September 2013


Quantum efficiency of the internal photoelectric effect in silicon and germanium
journal, February 1976

  • Christensen, Ove
  • Journal of Applied Physics, Vol. 47, Issue 2
  • DOI: 10.1063/1.322635

Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells
journal, November 2010

  • Nozik, A. J.; Beard, M. C.; Luther, J. M.
  • Chemical Reviews, Vol. 110, Issue 11
  • DOI: 10.1021/cr900289f

Multiexciton Generation by a Single Photon in Nanocrystals
journal, December 2006

  • Shabaev, A.; Efros, Al. L.; Nozik, A. J.
  • Nano Letters, Vol. 6, Issue 12
  • DOI: 10.1021/nl062059v

Quantum Simulation of Multiple-Exciton Generation in a Nanocrystal by a Single Photon
journal, September 2010


An exciton scattering model for carrier multiplication in semiconductor nanocrystals: Theory
journal, August 2010

  • Piryatinski, Andrei; Velizhanin, Kirill A.
  • The Journal of Chemical Physics, Vol. 133, Issue 8
  • DOI: 10.1063/1.3474576

Charging Quenches Multiple Exciton Generation in Semiconductor Nanocrystals: First-Principles Calculations on Small PbSe Clusters
journal, May 2009

  • Isborn, Christine M.; Prezhdo, Oleg V.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 29
  • DOI: 10.1021/jp902621a

Anomalous Independence of Multiple Exciton Generation on Different Group IV−VI Quantum Dot Architectures
journal, April 2011

  • Trinh, M. Tuan; Polak, Leo; Schins, Juleon M.
  • Nano Letters, Vol. 11, Issue 4
  • DOI: 10.1021/nl200014g

Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots
journal, May 2005

  • Ellingson, Randy J.; Beard, Matthew C.; Johnson, Justin C.
  • Nano Letters, Vol. 5, Issue 5, p. 865-871
  • DOI: 10.1021/nl0502672

Multiexciton Generation in IV–VI Nanocrystals: The Role of Carrier Effective Mass, Band Mixing, and Phonon Emission
journal, January 2013

  • Zohar, Gal; Baer, Roi; Rabani, Eran
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 2
  • DOI: 10.1021/jz301892z

Cation Exchange: A Versatile Tool for Nanomaterials Synthesis
journal, September 2013

  • Beberwyck, Brandon J.; Surendranath, Yogesh; Alivisatos, A. Paul
  • The Journal of Physical Chemistry C, Vol. 117, Issue 39
  • DOI: 10.1021/jp405989z

Colloidal Branched Semiconductor Nanocrystals: State of the Art and Perspectives
journal, January 2013

  • Li, Hongbo; Kanaras, Antonios G.; Manna, Liberato
  • Accounts of Chemical Research, Vol. 46, Issue 7
  • DOI: 10.1021/ar3002409

Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
journal, March 1961

  • Shockley, William; Queisser, Hans J.
  • Journal of Applied Physics, Vol. 32, Issue 3, p. 510-519
  • DOI: 10.1063/1.1736034

Multiexciton Dynamics in Infrared-Emitting Colloidal Nanostructures Probed by a Superconducting Nanowire Single-Photon Detector
journal, October 2012

  • Sandberg, Richard L.; Padilha, Lazaro A.; Qazilbash, Muhammad M.
  • ACS Nano, Vol. 6, Issue 11
  • DOI: 10.1021/nn3043226

Fundamental losses in solar cells
journal, August 2010

  • Hirst, Louise C.; Ekins-Daukes, Nicholas J.
  • Progress in Photovoltaics: Research and Applications, Vol. 19, Issue 3
  • DOI: 10.1002/pip.1024

Optimization of Carrier Multiplication for More Effcient Solar Cells: The Case of Sn Quantum Dots
journal, August 2011


Expeditious Stochastic Calculation of Multiexciton Generation Rates in Semiconductor Nanocrystals
journal, January 2012


Suppression of Auger Processes in Confined Structures
journal, January 2010

  • Cragg, George E.; Efros, Alexander L.
  • Nano Letters, Vol. 10, Issue 1
  • DOI: 10.1021/nl903592h

Extremely Efficient Multiple Electron-Hole Pair Generation in Carbon Nanotube Photodiodes
journal, September 2009


Multiple Exciton Generation in Semiconductor Quantum Dots
journal, May 2011

  • Beard, Matthew C.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 11
  • DOI: 10.1021/jz200166y

Multiexciton Generation in Seeded Nanorods
journal, July 2014

  • Eshet, Hagai; Baer, Roi; Neuhauser, Daniel
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 15
  • DOI: 10.1021/jz5010279

Multiple Exciton Generation in Small Si Clusters: A High-Level, Ab Initio Study
journal, November 2009

  • Fischer, Sean A.; Madrid, Angeline B.; Isborn, Christine M.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 1
  • DOI: 10.1021/jz900097e

Quantum dot solar cells
journal, April 2002


Electronic properties of CdSe nanocrystals in the absence and presence of a dielectric medium
journal, March 1999

  • Rabani, Eran; Hetényi, Balázs; Berne, B. J.
  • The Journal of Chemical Physics, Vol. 110, Issue 11
  • DOI: 10.1063/1.478431