DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nonflammable Lithium Metal Full Cells with Ultra-high Energy Density Based on Coordinated Carbonate Electrolytes

Abstract

Coupling thin Li metal anodes with high-capacity/high-voltage cathodes such as LiNi0.8Co0.1Mn0.1O2 (NCM811) is a promising way to increase lithium battery energy density. Yet, the realization of high-performance full cells remains a formidable challenge. Here, we demonstrate a new class of highly coordinated, nonflammable carbonate electrolytes based on lithium bis(fluorosulfonyl)imide (LiFSI) in propylene carbonate/fluoroethylene carbonate mixtures. Utilizing an optimal salt concentration (4 M LiFSI) of the electrolyte results in a unique coordination structure of Li+-FSI--solvent cluster, which is critical for enabling the formation of stable interfaces on both the thin Li metal anode and high-voltage NCM811 cathode. Under highly demanding cell configuration and operating conditions (Li metal anode = 35 μm, areal capacity/charge voltage of NCM811 cathode = 4.8 mAh cm-2/4.6 V, and anode excess capacity [relative to the cathode] = 0.83), the Li metal-based full cell provides exceptional electrochemical performance (energy densities = 679 Wh kgcell-1/1,024 Wh Lcell-1) coupled with nonflammability.

Authors:
 [1];  [1];  [2];  [1];  [3];  [2];  [1]
  1. Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of). School of Energy and Chemical Engineering. Dept. of Energy Engineering
  2. Army Research Lab., Adelphi, MD (United States). Sensor and Electron Devices Directorate. Energy and Biomaterials Division. Battery Science Branch
  3. LG Chem., Daejeon (Korea, Republic of). Battery R&D Center
Publication Date:
Research Org.:
Army Research Lab., Adelphi, MD (United States). Sensor and Electron Devices Directorate. Energy and Biomaterials Division. Battery Science Branch
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1623688
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
iScience
Additional Journal Information:
Journal Volume: 23; Journal Issue: 2; Journal ID: ISSN 2589-0042
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Science & Technology - Other Topics

Citation Formats

Cho, Sung-Ju, Yu, Dae-Eun, Pollard, Travis P., Moon, Hyunseok, Jang, Minchul, Borodin, Oleg, and Lee, Sang-Young. Nonflammable Lithium Metal Full Cells with Ultra-high Energy Density Based on Coordinated Carbonate Electrolytes. United States: N. p., 2020. Web. doi:10.1016/j.isci.2020.100844.
Cho, Sung-Ju, Yu, Dae-Eun, Pollard, Travis P., Moon, Hyunseok, Jang, Minchul, Borodin, Oleg, & Lee, Sang-Young. Nonflammable Lithium Metal Full Cells with Ultra-high Energy Density Based on Coordinated Carbonate Electrolytes. United States. https://doi.org/10.1016/j.isci.2020.100844
Cho, Sung-Ju, Yu, Dae-Eun, Pollard, Travis P., Moon, Hyunseok, Jang, Minchul, Borodin, Oleg, and Lee, Sang-Young. Sat . "Nonflammable Lithium Metal Full Cells with Ultra-high Energy Density Based on Coordinated Carbonate Electrolytes". United States. https://doi.org/10.1016/j.isci.2020.100844. https://www.osti.gov/servlets/purl/1623688.
@article{osti_1623688,
title = {Nonflammable Lithium Metal Full Cells with Ultra-high Energy Density Based on Coordinated Carbonate Electrolytes},
author = {Cho, Sung-Ju and Yu, Dae-Eun and Pollard, Travis P. and Moon, Hyunseok and Jang, Minchul and Borodin, Oleg and Lee, Sang-Young},
abstractNote = {Coupling thin Li metal anodes with high-capacity/high-voltage cathodes such as LiNi0.8Co0.1Mn0.1O2 (NCM811) is a promising way to increase lithium battery energy density. Yet, the realization of high-performance full cells remains a formidable challenge. Here, we demonstrate a new class of highly coordinated, nonflammable carbonate electrolytes based on lithium bis(fluorosulfonyl)imide (LiFSI) in propylene carbonate/fluoroethylene carbonate mixtures. Utilizing an optimal salt concentration (4 M LiFSI) of the electrolyte results in a unique coordination structure of Li+-FSI--solvent cluster, which is critical for enabling the formation of stable interfaces on both the thin Li metal anode and high-voltage NCM811 cathode. Under highly demanding cell configuration and operating conditions (Li metal anode = 35 μm, areal capacity/charge voltage of NCM811 cathode = 4.8 mAh cm-2/4.6 V, and anode excess capacity [relative to the cathode] = 0.83), the Li metal-based full cell provides exceptional electrochemical performance (energy densities = 679 Wh kgcell-1/1,024 Wh Lcell-1) coupled with nonflammability.},
doi = {10.1016/j.isci.2020.100844},
journal = {iScience},
number = 2,
volume = 23,
place = {United States},
year = {2020},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 46 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode
journal, September 2018


Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


The development of lithium ion secondary batteries
conference, January 1996


Less is more
journal, April 2019


Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions
journal, March 2019


The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
journal, June 2015

  • Li, Weiyang; Yao, Hongbin; Yan, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8436

Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries
journal, January 2018

  • Suo, Liumin; Xue, Weijiang; Gobet, Mallory
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 6
  • DOI: 10.1073/pnas.1712895115

Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries
journal, December 2017


Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes
journal, January 2019

  • Alvarado, Judith; Schroeder, Marshall A.; Pollard, Travis P.
  • Energy & Environmental Science, Vol. 12, Issue 2
  • DOI: 10.1039/C8EE02601G

Li-ion batteries and portable power source prospects for the next 5–10 years
journal, October 2004


A Review of Solid Electrolyte Interphases on Lithium Metal Anode
journal, November 2015


Correlating Li + Solvation Sheath Structure with Interphasial Chemistry on Graphite
journal, December 2012

  • von Wald Cresce, Arthur; Borodin, Oleg; Xu, Kang
  • The Journal of Physical Chemistry C, Vol. 116, Issue 50
  • DOI: 10.1021/jp303610t

Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries
journal, January 2018


Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries
journal, July 2018


Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions
journal, March 2019


Insight into the Atomic Structure of Cycled Lithium-Rich Layered Oxide Li 1.20 Mn 0.54 Co 0.13 Ni 0.13 O 2 Using HAADF STEM and Electron Nanodiffraction
journal, December 2014

  • Genevois, Cécile; Koga, Hideyuki; Croguennec, Laurence
  • The Journal of Physical Chemistry C, Vol. 119, Issue 1
  • DOI: 10.1021/jp509388j

Conversion Cathodes: Lithium-Iron Fluoride Battery with In Situ Surface Protection (Adv. Funct. Mater. 10/2016)
journal, March 2016

  • Gu, Wentian; Borodin, Oleg; Zdyrko, Bogdan
  • Advanced Functional Materials, Vol. 26, Issue 10
  • DOI: 10.1002/adfm.201670060

Stable cycling of high-voltage lithium metal batteries in ether electrolytes
journal, July 2018


Understanding the Degradation Mechanisms of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode Material in Lithium Ion Batteries
journal, August 2013

  • Jung, Sung-Kyun; Gwon, Hyeokjo; Hong, Jihyun
  • Advanced Energy Materials, Vol. 4, Issue 1
  • DOI: 10.1002/aenm.201300787

A stable lithium-rich surface structure for lithium-rich layered cathode materials
journal, November 2016

  • Kim, Sangryun; Cho, Woosuk; Zhang, Xiaobin
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13598

Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries
journal, September 2018


Kinetic Stability of Bulk LiNiO 2 and Surface Degradation by Oxygen Evolution in LiNiO 2 -Based Cathode Materials
journal, November 2018

  • Kong, Fantai; Liang, Chaoping; Wang, Luhua
  • Advanced Energy Materials, Vol. 9, Issue 2
  • DOI: 10.1002/aenm.201802586

The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
journal, June 2015

  • Li, Weiyang; Yao, Hongbin; Yan, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8436

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Materials for lithium-ion battery safety
journal, June 2018


Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode
journal, September 2018


Pathways for practical high-energy long-cycling lithium metal batteries
journal, February 2019


Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes
journal, September 2014

  • Lu, Dongping; Shao, Yuyan; Lozano, Terence
  • Advanced Energy Materials, Vol. 5, Issue 3
  • DOI: 10.1002/aenm.201400993

Very Stable Lithium Metal Stripping–Plating at a High Rate and High Areal Capacity in Fluoroethylene Carbonate-Based Organic Electrolyte Solution
journal, May 2017


The development of lithium ion secondary batteries
journal, January 2001


Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions
journal, April 2019


Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes
journal, January 1997

  • Peled, E.
  • Journal of The Electrochemical Society, Vol. 144, Issue 8
  • DOI: 10.1149/1.1837858

Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density
journal, May 2017

  • Placke, Tobias; Kloepsch, Richard; Dühnen, Simon
  • Journal of Solid State Electrochemistry, Vol. 21, Issue 7
  • DOI: 10.1007/s10008-017-3610-7

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362

Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions
journal, July 2019


Electrolyte Solvation and Ionic Association
journal, January 2012

  • Seo, Daniel M.; Borodin, Oleg; Han, Sang-Don
  • Journal of The Electrochemical Society, Vol. 159, Issue 5
  • DOI: 10.1149/2.jes112264

A Safe Electrolyte Based on Propylene Carbonate and Non-Flammable Hydrofluoroether for High-Performance Lithium Ion Batteries
journal, January 2017

  • Shi, Pei; Fang, Shaohua; Luo, Dong
  • Journal of The Electrochemical Society, Vol. 164, Issue 9
  • DOI: 10.1149/2.1181709jes

Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries
journal, January 2018

  • Suo, Liumin; Xue, Weijiang; Gobet, Mallory
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 6
  • DOI: 10.1073/pnas.1712895115

On Electrolyte-Dependent Formation of Solid Electrolyte Interphase Film in Lithium-Ion Batteries: Strong Sensitivity to Small Structural Difference of Electrolyte Molecules
journal, May 2014

  • Takenaka, Norio; Suzuki, Yuichi; Sakai, Hirofumi
  • The Journal of Physical Chemistry C, Vol. 118, Issue 20
  • DOI: 10.1021/jp5018696

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Ultrafine Silver Nanoparticles for Seeded Lithium Deposition toward Stable Lithium Metal Anode
journal, August 2017

  • Yang, Chunpeng; Yao, Yonggang; He, Shuaiming
  • Advanced Materials, Vol. 29, Issue 38
  • DOI: 10.1002/adma.201702714

Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes
journal, May 2017

  • Zhang, Rui; Chen, Xiao-Ru; Chen, Xiang
  • Angewandte Chemie International Edition, Vol. 56, Issue 27
  • DOI: 10.1002/anie.201702099

High Voltage Operation of Ni-Rich NMC Cathodes Enabled by Stable Electrode/Electrolyte Interphases
journal, March 2018

  • Zhao, Wengao; Zheng, Jianming; Zou, Lianfeng
  • Advanced Energy Materials, Vol. 8, Issue 19
  • DOI: 10.1002/aenm.201800297

Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
journal, March 2017