DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nonturbulent Liquid‐Bearing Polar Clouds: Observed Frequency of Occurrence and Simulated Sensitivity to Gravity Waves

Abstract

Abstract A common feature of polar liquid‐bearing clouds (LBCs) is radiatively driven turbulence, which may variously alter cloud lifecycle via vertical mixing, droplet activation, and subsequent feedbacks. However, polar LBCs are commonly initiated under stable, nonturbulent conditions. Using long‐term data from the North Slope of Alaska and McMurdo, Antarctica, we show that nonturbulent conditions prevail in ~25% of detected LBCs, surmised to be preferentially early in their lifecycle. We conclude that nonturbulent LBCs are likely common over the polar regions owing primarily to atmospheric temperature and stability. Such stable environments are known to support gravity wave activity. Using large‐eddy simulations, we find that short to intermediate period gravity waves may catalyze turbulence formation when aerosol particles available for activation are sufficiently small. We posit that the frequent occurrence of nonturbulent LBCs over the polar regions has implications for polar aerosol‐cloud interactions and their parameterization in large‐scale models.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [2]
  1. Department of Meteorology and Atmospheric Science Pennsylvania State University University Park PA USA
  2. NASA Goddard Institute for Space Studies New York NY USA
  3. Scripps Institution of Oceanography University of California San Diego CA USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1619892
Grant/Contract Number:  
DE‐SC0017981; DE‐SC0018046
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Name: Geophysical Research Letters Journal Volume: 47 Journal Issue: 10; Journal ID: ISSN 0094-8276
Publisher:
American Geophysical Union (AGU)
Country of Publication:
United States
Language:
English

Citation Formats

Silber, Israel, Fridlind, Ann M., Verlinde, Johannes, Russell, Lynn M., and Ackerman, Andrew S. Nonturbulent Liquid‐Bearing Polar Clouds: Observed Frequency of Occurrence and Simulated Sensitivity to Gravity Waves. United States: N. p., 2020. Web. doi:10.1029/2020GL087099.
Silber, Israel, Fridlind, Ann M., Verlinde, Johannes, Russell, Lynn M., & Ackerman, Andrew S. Nonturbulent Liquid‐Bearing Polar Clouds: Observed Frequency of Occurrence and Simulated Sensitivity to Gravity Waves. United States. https://doi.org/10.1029/2020GL087099
Silber, Israel, Fridlind, Ann M., Verlinde, Johannes, Russell, Lynn M., and Ackerman, Andrew S. Mon . "Nonturbulent Liquid‐Bearing Polar Clouds: Observed Frequency of Occurrence and Simulated Sensitivity to Gravity Waves". United States. https://doi.org/10.1029/2020GL087099.
@article{osti_1619892,
title = {Nonturbulent Liquid‐Bearing Polar Clouds: Observed Frequency of Occurrence and Simulated Sensitivity to Gravity Waves},
author = {Silber, Israel and Fridlind, Ann M. and Verlinde, Johannes and Russell, Lynn M. and Ackerman, Andrew S.},
abstractNote = {Abstract A common feature of polar liquid‐bearing clouds (LBCs) is radiatively driven turbulence, which may variously alter cloud lifecycle via vertical mixing, droplet activation, and subsequent feedbacks. However, polar LBCs are commonly initiated under stable, nonturbulent conditions. Using long‐term data from the North Slope of Alaska and McMurdo, Antarctica, we show that nonturbulent conditions prevail in ~25% of detected LBCs, surmised to be preferentially early in their lifecycle. We conclude that nonturbulent LBCs are likely common over the polar regions owing primarily to atmospheric temperature and stability. Such stable environments are known to support gravity wave activity. Using large‐eddy simulations, we find that short to intermediate period gravity waves may catalyze turbulence formation when aerosol particles available for activation are sufficiently small. We posit that the frequent occurrence of nonturbulent LBCs over the polar regions has implications for polar aerosol‐cloud interactions and their parameterization in large‐scale models.},
doi = {10.1029/2020GL087099},
journal = {Geophysical Research Letters},
number = 10,
volume = 47,
place = {United States},
year = {Mon May 18 00:00:00 EDT 2020},
month = {Mon May 18 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1029/2020GL087099

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Characteristics of mixed-phase clouds. I: Lidar, radar and aircraft observations from CLARE'98
journal, July 2003

  • Hogan, R. J.; Francis, P. N.; Flentje, H.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 129, Issue 592
  • DOI: 10.1256/rj.01.208

Cloud Radiative Forcing at Summit, Greenland
journal, August 2015

  • Miller, Nathaniel B.; Shupe, Matthew D.; Cox, Christopher J.
  • Journal of Climate, Vol. 28, Issue 15
  • DOI: 10.1175/JCLI-D-15-0076.1

Measurements of aerosol and CCN properties in the Mackenzie River delta (Canadian Arctic) during spring–summer transition in May 2014
journal, January 2018

  • Herenz, Paul; Wex, Heike; Henning, Silvia
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 7
  • DOI: 10.5194/acp-18-4477-2018

Gravity wave characteristics in the lower atmosphere at south pole
journal, March 1999

  • Pfenninger, Matt; Liu, Alan Z.; Papen, George C.
  • Journal of Geophysical Research: Atmospheres, Vol. 104, Issue D6
  • DOI: 10.1029/98JD02705

Role of air-mass transformations in exchange between the Arctic and mid-latitudes
journal, October 2018


Characteristic nature of vertical motions observed in Arctic mixed-phase stratocumulus
journal, January 2014


A 3-year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska: CHEMICAL AND OPTICAL PROPERTIES AT BARROW, ALASKA
journal, June 2002

  • Quinn, P. K.; Miller, T. L.; Bates, T. S.
  • Journal of Geophysical Research: Atmospheres, Vol. 107, Issue D11
  • DOI: 10.1029/2001JD001248

Resilience of persistent Arctic mixed-phase clouds
journal, December 2011

  • Morrison, Hugh; de Boer, Gijs; Feingold, Graham
  • Nature Geoscience, Vol. 5, Issue 1
  • DOI: 10.1038/ngeo1332

Intercomparison of large-eddy simulations of Arctic mixed-phase clouds: Importance of ice size distribution assumptions
journal, March 2014

  • Ovchinnikov, Mikhail; Ackerman, Andrew S.; Avramov, Alexander
  • Journal of Advances in Modeling Earth Systems, Vol. 6, Issue 1
  • DOI: 10.1002/2013MS000282

Processes Responsible for Cloud Feedback
journal, October 2016


On the Relationship between Thermodynamic Structure and Cloud Top, and Its Climate Significance in the Arctic
journal, April 2012

  • Sedlar, Joseph; Shupe, Matthew D.; Tjernström, Michael
  • Journal of Climate, Vol. 25, Issue 7
  • DOI: 10.1175/JCLI-D-11-00186.1

The vertical structure of the lower Arctic troposphere analysed from observations and the ERA-40 reanalysis
journal, January 2009

  • Tjernström, Michael; Graversen, Rune Grand
  • Quarterly Journal of the Royal Meteorological Society, Vol. 135, Issue 639
  • DOI: 10.1002/qj.380

Latitudinal Variations Observed in Gravity Waves with Short Vertical Wavelengths
journal, April 2002


Effect of the Oxygen Line-Parameter Modeling on Temperature and Humidity Retrievals From Ground-Based Microwave Radiometers
journal, July 2007

  • Cadeddu, Maria P.; Payne, Vivienne H.; Clough, S. A.
  • IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, Issue 7
  • DOI: 10.1109/TGRS.2007.894063

Ice formation in Saharan dust over central Europe observed with temperature/humidity/aerosol Raman lidar
journal, January 2005


On cloud radar and microwave radiometer measurements of stratus cloud liquid water profiles
journal, September 1998

  • Frisch, A. S.; Feingold, G.; Fairall, C. W.
  • Journal of Geophysical Research: Atmospheres, Vol. 103, Issue D18
  • DOI: 10.1029/98JD01827

Implications of Limited Liquid Water Path on Static Mixing within Arctic Low-Level Clouds
journal, December 2014


Arctic multilayered, mixed-phase cloud processes revealed in millimeter-wave cloud radar Doppler spectra: ARCTIC MULTILAYERED CLOUD PROCESSES
journal, December 2013

  • Verlinde, Johannes; Rambukkange, Mahlon P.; Clothiaux, Eugene E.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 23
  • DOI: 10.1002/2013JD020183

Gravity wave dynamics and effects in the middle atmosphere
journal, January 2003


Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion
journal, January 2011

  • Solomon, A.; Shupe, M. D.; Persson, P. O. G.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 19
  • DOI: 10.5194/acp-11-10127-2011

The ARM North Slope of Alaska (NSA) Sites
journal, April 2016


Decadal trends in aerosol chemical composition at Barrow, Alaska: 1976–2008
journal, January 2009

  • Quinn, P. K.; Bates, T. S.; Schulz, K.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 22
  • DOI: 10.5194/acp-9-8883-2009

The structure of turbulence and mixed-phase cloud microphysics in a highly supercooled altocumulus cloud
journal, January 2020

  • Barrett, Paul A.; Blyth, Alan; Brown, Philip R. A.
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 4
  • DOI: 10.5194/acp-20-1921-2020

Formation of Arctic Stratocumuli Through Atmospheric Radiative Cooling
journal, August 2019

  • Simpfendoerfer, Lucien F.; Verlinde, Johannes; Harrington, Jerry Y.
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 16
  • DOI: 10.1029/2018JD030189

Transport and freeze-drying in the tropical tropopause layer
journal, January 2004


Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes
journal, April 2006


Lagrangian temperature and vertical velocity fluctuations due to gravity waves in the lower stratosphere
journal, April 2016

  • Podglajen, Aurélien; Hertzog, Albert; Plougonven, Riwal
  • Geophysical Research Letters, Vol. 43, Issue 7
  • DOI: 10.1002/2016GL068148

Stratiform Cloud—Inversion Characterization During the Arctic Melt Season
journal, July 2009


Overview of Arctic Cloud and Radiation Characteristics
journal, August 1996


Thin Liquid Water Clouds: Their Importance and Our Challenge
journal, February 2007

  • Turner, D. D.; Vogelmann, A. M.; Austin, R. T.
  • Bulletin of the American Meteorological Society, Vol. 88, Issue 2
  • DOI: 10.1175/BAMS-88-2-177

Aerosol Effects on Cloud Emissivity and Surface Longwave Heating in the Arctic
journal, February 2002


Effects of Domain Size and Numerical Resolution on the Simulation of Shallow Cumulus Convection
journal, December 2002


Impact of Gravity Waves on Marine Stratocumulus Variability
journal, December 2012

  • Jiang, Qingfang; Wang, Shouping
  • Journal of the Atmospheric Sciences, Vol. 69, Issue 12
  • DOI: 10.1175/JAS-D-12-0135.1

Antarctic Cloud Macrophysical, Thermodynamic Phase, and Atmospheric Inversion Coupling Properties at McMurdo Station: I. Principal Data Processing and Climatology
journal, June 2018

  • Silber, Israel; Verlinde, Johannes; Eloranta, Edwin W.
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 11
  • DOI: 10.1029/2018JD028279

Contributions of transported Prudhoe Bay oil field emissions to the aerosol population in Utqiaġvik, Alaska
journal, January 2017

  • Gunsch, Matthew J.; Kirpes, Rachel M.; Kolesar, Katheryn R.
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 17
  • DOI: 10.5194/acp-17-10879-2017

Local and Remote Controls on Arctic Mixed‐Layer Evolution
journal, July 2019

  • Neggers, R. A. J.; Chylik, J.; Egerer, U.
  • Journal of Advances in Modeling Earth Systems, Vol. 11, Issue 7
  • DOI: 10.1029/2019MS001671

Cloud and boundary layer interactions over the Arctic sea ice in late summer
journal, January 2013

  • Shupe, M. D.; Persson, P. O. G.; Brooks, I. M.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 18
  • DOI: 10.5194/acp-13-9379-2013

High Spectral Resolution Lidar
book, January 2006


A global model study of processes controlling aerosol size distributions in the Arctic spring and summer
journal, January 2008

  • Korhonen, Hannele; Carslaw, Kenneth S.; Spracklen, Dominick V.
  • Journal of Geophysical Research, Vol. 113, Issue D8
  • DOI: 10.1029/2007JD009114

On the formation of non-adiabatic LWC profile in stratiform clouds
journal, March 1993


The impact of aerosols and gravity waves on cirrus clouds at midlatitudes
journal, January 2004


High-frequency gravity waves and homogeneous ice nucleation in tropical tropopause layer cirrus: WAVES AND ICE NUCLEATION
journal, June 2016

  • Jensen, Eric J.; Ueyama, Rei; Pfister, Leonhard
  • Geophysical Research Letters, Vol. 43, Issue 12
  • DOI: 10.1002/2016GL069426

Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories
journal, January 2018

  • Schmale, Julia; Henning, Silvia; Decesari, Stefano
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 4
  • DOI: 10.5194/acp-18-2853-2018

A decadal satellite record of gravity wave activity in the lower stratosphere to study polar stratospheric cloud formation
journal, January 2017

  • Hoffmann, Lars; Spang, Reinhold; Orr, Andrew
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 4
  • DOI: 10.5194/acp-17-2901-2017

High summertime aerosol organic functional group concentrations from marine and seabird sources at Ross Island, Antarctica, during AWARE
journal, January 2018

  • Liu, Jun; Dedrick, Jeramy; Russell, Lynn M.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 12
  • DOI: 10.5194/acp-18-8571-2018

Modelling the effects of gravity waves on stratocumulus clouds observed during VOCALS-UK
journal, January 2013

  • Connolly, P. J.; Vaughan, G.; Cook, P.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 14
  • DOI: 10.5194/acp-13-7133-2013

Gravity-wave-induced perturbations in marine stratocumulus
journal, May 2012

  • Allen, G.; Vaughan, G.; Toniazzo, T.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 139, Issue 670
  • DOI: 10.1002/qj.1952

Physics and Chemistry of Clouds
book, January 2011


Ice in Clouds Experiment–Layer Clouds. Part II: Testing Characteristics of Heterogeneous Ice Formation in Lee Wave Clouds
journal, March 2012

  • Field, P. R.; Heymsfield, A. J.; Shipway, B. J.
  • Journal of the Atmospheric Sciences, Vol. 69, Issue 3
  • DOI: 10.1175/JAS-D-11-026.1

Interactions among Turbulence, Radiation and Microphysics in Arctic Stratus Clouds
journal, January 1986


Aerosol size distribution seasonal characteristics measured in Tiksi, Russian Arctic
journal, January 2016


Ice nucleation characteristics of an isolated wave cloud
journal, October 2002

  • Cotton, R. J.; Field, P. R.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 128, Issue 585
  • DOI: 10.1256/qj.01.150

The thermodynamic structure of summer Arctic stratocumulus and the dynamic coupling to the surface
journal, January 2014

  • Sotiropoulou, G.; Sedlar, J.; Tjernström, M.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 22
  • DOI: 10.5194/acp-14-12573-2014