skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Solid-state polymer electrolytes for high-performance lithium metal batteries

Abstract

Electrochemical cells based on alkali metal anodes are receiving intensive scientific interest as potentially transformative technology platforms for electrical energy storage. Chemical, morphological, mechanical and hydrodynamic instabilities at the metal anode produce uneven metal electrodeposition and poor anode reversibility, which, are among the many known challenges that limit progress. Here, we report that solid-state electrolytes based on crosslinked polymer networks can address all of these challenges in cells based on lithium metal anodes. By means of transport and electrochemical analyses, we show that manipulating thermodynamic interactions between polymer segments covalently anchored in the network and “free” segments belonging to an oligomeric electrolyte hosted in the network pores, one can facilely create hybrid electrolytes that simultaneously exhibit liquid-like barriers to ion transport and solid-like resistance to morphological and hydrodynamic instability.

Authors:
ORCiD logo; ORCiD logo; ; ORCiD logo; ; ORCiD logo; ORCiD logo
Publication Date:
Research Org.:
Cornell Univ., Ithaca, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1619719
Alternate Identifier(s):
OSTI ID: 1612391
Grant/Contract Number:  
SC0016082
Resource Type:
Published Article
Journal Name:
Nature Communications
Additional Journal Information:
Journal Name: Nature Communications Journal Volume: 10 Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United Kingdom
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; Science & Technology

Citation Formats

Choudhury, Snehashis, Stalin, Sanjuna, Vu, Duylinh, Warren, Alexander, Deng, Yue, Biswal, Prayag, and Archer, Lynden A. Solid-state polymer electrolytes for high-performance lithium metal batteries. United Kingdom: N. p., 2019. Web. doi:10.1038/s41467-019-12423-y.
Choudhury, Snehashis, Stalin, Sanjuna, Vu, Duylinh, Warren, Alexander, Deng, Yue, Biswal, Prayag, & Archer, Lynden A. Solid-state polymer electrolytes for high-performance lithium metal batteries. United Kingdom. doi:10.1038/s41467-019-12423-y.
Choudhury, Snehashis, Stalin, Sanjuna, Vu, Duylinh, Warren, Alexander, Deng, Yue, Biswal, Prayag, and Archer, Lynden A. Fri . "Solid-state polymer electrolytes for high-performance lithium metal batteries". United Kingdom. doi:10.1038/s41467-019-12423-y.
@article{osti_1619719,
title = {Solid-state polymer electrolytes for high-performance lithium metal batteries},
author = {Choudhury, Snehashis and Stalin, Sanjuna and Vu, Duylinh and Warren, Alexander and Deng, Yue and Biswal, Prayag and Archer, Lynden A.},
abstractNote = {Electrochemical cells based on alkali metal anodes are receiving intensive scientific interest as potentially transformative technology platforms for electrical energy storage. Chemical, morphological, mechanical and hydrodynamic instabilities at the metal anode produce uneven metal electrodeposition and poor anode reversibility, which, are among the many known challenges that limit progress. Here, we report that solid-state electrolytes based on crosslinked polymer networks can address all of these challenges in cells based on lithium metal anodes. By means of transport and electrochemical analyses, we show that manipulating thermodynamic interactions between polymer segments covalently anchored in the network and “free” segments belonging to an oligomeric electrolyte hosted in the network pores, one can facilely create hybrid electrolytes that simultaneously exhibit liquid-like barriers to ion transport and solid-like resistance to morphological and hydrodynamic instability.},
doi = {10.1038/s41467-019-12423-y},
journal = {Nature Communications},
number = 1,
volume = 10,
place = {United Kingdom},
year = {2019},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1038/s41467-019-12423-y

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Characterization of layered silicate dispersion in polymer nanocomposites using Fourier transform infrared spectroscopy
journal, December 2011

  • Zhang, Xingui; Bhuvana, Sowrirajalu; Loo, Leslie S.
  • Journal of Applied Polymer Science, Vol. 125, Issue S1
  • DOI: 10.1002/app.36266

FTIR Spectroscopy of Protein Isolates of Salt-Tolerant Soybean Mutants
journal, January 2018


Glass Transition Temperature of Homogeneous Blends and Copolymers
journal, October 2000


A review on electrolyte additives for lithium-ion batteries
journal, November 2006


Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries
journal, January 2012

  • Stone, G. M.; Mullin, S. A.; Teran, A. A.
  • Journal of The Electrochemical Society, Vol. 159, Issue 3
  • DOI: 10.1149/2.030203jes

Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
journal, March 2017


Advances in understanding mechanisms underpinning lithium–air batteries
journal, September 2016


Confining electrodeposition of metals in structured electrolytes
journal, June 2018

  • Choudhury, Snehashis; Vu, Duylinh; Warren, Alexander
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 26
  • DOI: 10.1073/pnas.1803385115

Electroconvection and Morphological Instabilities in Potentiostatic Electrodeposition across Liquid Electrolytes with Polymer Additives
journal, January 2018

  • Tikekar, Mukul D.; Li, Gaojin; Archer, Lynden A.
  • Journal of The Electrochemical Society, Vol. 165, Issue 16
  • DOI: 10.1149/2.0271816jes

The ‘universal’ dielectric response
journal, June 1977


Electrochemical Interphases for High-Energy Storage Using Reactive Metal Anodes
journal, December 2017


Stabilizing electrochemical interfaces in viscoelastic liquid electrolytes
journal, March 2018


Absence of bulk electroconvective instability in concentration polarization
journal, January 2005


Electroconvective instability in concentration polarization and nonequilibrium electro-osmotic slip
journal, July 2005


Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition
journal, May 2015


Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries
journal, May 2014

  • Khurana, Rachna; Schaefer, Jennifer L.; Archer, Lynden A.
  • Journal of the American Chemical Society, Vol. 136, Issue 20
  • DOI: 10.1021/ja502133j

Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities
journal, January 2016

  • Choudhury, Snehashis; Archer, Lynden A.
  • Advanced Electronic Materials, Vol. 2, Issue 2
  • DOI: 10.1002/aelm.201500246

Electro-osmotic slip and electroconvective instability
journal, May 2007


Nanomaterials: Science and applications in the lithium–sulfur battery
journal, June 2015


Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries
journal, March 2013

  • Bouchet, Renaud; Maria, Sébastien; Meziane, Rachid
  • Nature Materials, Vol. 12, Issue 5
  • DOI: 10.1038/nmat3602

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Nanocomposites of Titanium Dioxide and Polystyrene-Poly(ethylene oxide) Block Copolymer as Solid-State Electrolytes for Lithium Metal Batteries
journal, January 2013

  • Gurevitch, Inna; Buonsanti, Raffaella; Teran, Alexander A.
  • Journal of The Electrochemical Society, Vol. 160, Issue 9
  • DOI: 10.1149/2.117309jes

Design principles for electrolytes and interfaces for stable lithium-metal batteries
journal, September 2016


Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
journal, July 2017


Miscibility and Double Glass Transition Temperature Depression of Poly( l -lactic acid) (PLLA)/Poly(oxymethylene) (POM) Blends
journal, July 2013

  • Qiu, Jishan; Xing, Chenyang; Cao, Xiaojun
  • Macromolecules, Vol. 46, Issue 14
  • DOI: 10.1021/ma401084y

Conductivity spectroscopy
journal, August 1997


A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles
journal, December 2015

  • Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10101

Transition of lithium growth mechanisms in liquid electrolytes
journal, January 2016

  • Bai, Peng; Li, Ju; Brushett, Fikile R.
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE01674J

Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions
journal, July 2016

  • Tikekar, Mukul D.; Archer, Lynden A.; Koch, Donald L.
  • Science Advances, Vol. 2, Issue 7
  • DOI: 10.1126/sciadv.1600320

Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries
journal, January 2018

  • Suo, Liumin; Xue, Weijiang; Gobet, Mallory
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 6
  • DOI: 10.1073/pnas.1712895115

Stabilizing Lithium Metal Anodes by Uniform Li-Ion Flux Distribution in Nanochannel Confinement
journal, November 2016

  • Liu, Wei; Lin, Dingchang; Pei, Allen
  • Journal of the American Chemical Society, Vol. 138, Issue 47
  • DOI: 10.1021/jacs.6b08730

Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041