DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High performance III-V photoelectrodes for solar water splitting via synergistically tailored structure and stoichiometry

Abstract

Abstract Catalytic interface of semiconductor photoelectrodes is critical for high-performance photoelectrochemical solar water splitting because of its multiple roles in light absorption, electrocatalysis, and corrosion protection. Nevertheless, simultaneously optimizing each of these processes represents a materials conundrum owing to conflicting requirements of materials attributes at the electrode surface. Here we show an approach that can circumvent these challenges by collaboratively exploiting corrosion-resistant surface stoichiometry and structurally-tailored reactive interface. Nanoporous, density-graded surface of ‘black’ gallium indium phosphide (GaInP 2 ), when combined with ammonium-sulfide-based surface passivation, effectively reduces reflection and surface recombination of photogenerated carriers for high efficiency photocatalysis in the hydrogen evolution half-reaction, but also augments electrochemical durability with lifetime over 124 h via strongly suppressed kinetics of corrosion. Such synergistic control of stoichiometry and structure at the reactive interface provides a practical pathway to concurrently enhance efficiency and durability of semiconductor photoelectrodes without solely relying on the development of new protective materials.

Authors:
; ORCiD logo; ORCiD logo; ; ORCiD logo; ORCiD logo
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Sustainable Transportation Office. Hydrogen Fuel Cell Technologies Office; USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office; National Science Foundation (NSF)
OSTI Identifier:
1619650
Alternate Identifier(s):
OSTI ID: 1550785
Report Number(s):
NREL/JA-5900-71473
Journal ID: ISSN 2041-1723; 3388; PII: 11351
Grant/Contract Number:  
AC36-08GO28308; ECCS-1509897; CBET-1707169
Resource Type:
Published Article
Journal Name:
Nature Communications
Additional Journal Information:
Journal Name: Nature Communications Journal Volume: 10 Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United Kingdom
Language:
English
Subject:
14 SOLAR ENERGY; 77 NANOSCIENCE AND NANOTECHNOLOGY; III-V semiconductor; photoelectrolysis; anti-reflection; devices for energy harvesting; nanoscale materials; photocatalysis

Citation Formats

Lim, Haneol, Young, James L., Geisz, John F., Friedman, Daniel J., Deutsch, Todd G., and Yoon, Jongseung. High performance III-V photoelectrodes for solar water splitting via synergistically tailored structure and stoichiometry. United Kingdom: N. p., 2019. Web. doi:10.1038/s41467-019-11351-1.
Lim, Haneol, Young, James L., Geisz, John F., Friedman, Daniel J., Deutsch, Todd G., & Yoon, Jongseung. High performance III-V photoelectrodes for solar water splitting via synergistically tailored structure and stoichiometry. United Kingdom. https://doi.org/10.1038/s41467-019-11351-1
Lim, Haneol, Young, James L., Geisz, John F., Friedman, Daniel J., Deutsch, Todd G., and Yoon, Jongseung. Mon . "High performance III-V photoelectrodes for solar water splitting via synergistically tailored structure and stoichiometry". United Kingdom. https://doi.org/10.1038/s41467-019-11351-1.
@article{osti_1619650,
title = {High performance III-V photoelectrodes for solar water splitting via synergistically tailored structure and stoichiometry},
author = {Lim, Haneol and Young, James L. and Geisz, John F. and Friedman, Daniel J. and Deutsch, Todd G. and Yoon, Jongseung},
abstractNote = {Abstract Catalytic interface of semiconductor photoelectrodes is critical for high-performance photoelectrochemical solar water splitting because of its multiple roles in light absorption, electrocatalysis, and corrosion protection. Nevertheless, simultaneously optimizing each of these processes represents a materials conundrum owing to conflicting requirements of materials attributes at the electrode surface. Here we show an approach that can circumvent these challenges by collaboratively exploiting corrosion-resistant surface stoichiometry and structurally-tailored reactive interface. Nanoporous, density-graded surface of ‘black’ gallium indium phosphide (GaInP 2 ), when combined with ammonium-sulfide-based surface passivation, effectively reduces reflection and surface recombination of photogenerated carriers for high efficiency photocatalysis in the hydrogen evolution half-reaction, but also augments electrochemical durability with lifetime over 124 h via strongly suppressed kinetics of corrosion. Such synergistic control of stoichiometry and structure at the reactive interface provides a practical pathway to concurrently enhance efficiency and durability of semiconductor photoelectrodes without solely relying on the development of new protective materials.},
doi = {10.1038/s41467-019-11351-1},
journal = {Nature Communications},
number = 1,
volume = 10,
place = {United Kingdom},
year = {2019},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1038/s41467-019-11351-1

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Thermodynamic stabilities of semiconductor electrodes
journal, May 1979

  • Park, Su-Moon; Barber, Matthew E.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 99, Issue 1
  • DOI: 10.1016/S0022-0728(79)80411-8

Improved performances of InGaP Schottky contact with Ti/Pt/Au metals and MSM photodetectors by (NH4)2Sx treatment
journal, November 1997


Electrochemical Photolysis of Water at a Semiconductor Electrode
journal, July 1972

  • Fujishima, Akira; Honda, Kenichi
  • Nature, Vol. 238, Issue 5358, p. 37-38
  • DOI: 10.1038/238037a0

Nanostructured Silicon Photocathodes for Solar Water Splitting Patterned by the Self-Assembly of Lamellar Block Copolymers
journal, November 2015

  • Shen, Lang; He, Chunlin; Qiu, Jing
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 47
  • DOI: 10.1021/acsami.5b08661

Highly Stable Molybdenum Disulfide Protected Silicon Photocathodes for Photoelectrochemical Water Splitting
journal, October 2017

  • King, Laurie A.; Hellstern, Thomas R.; Park, Joonsuk
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 42
  • DOI: 10.1021/acsami.7b10749

Novel Carbon-Doped TiO 2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting
journal, January 2006

  • Park, Jong Hyeok; Kim, Sungwook; Bard, Allen J.
  • Nano Letters, Vol. 6, Issue 1
  • DOI: 10.1021/nl051807y

Semiconductor-based Photocatalytic Hydrogen Generation
journal, November 2010

  • Chen, Xiaobo; Shen, Shaohua; Guo, Liejin
  • Chemical Reviews, Vol. 110, Issue 11
  • DOI: 10.1021/cr1001645

Printable Nanostructured Silicon Solar Cells for High-Performance, Large-Area Flexible Photovoltaics
journal, October 2014

  • Lee, Sung-Min; Biswas, Roshni; Li, Weigu
  • ACS Nano, Vol. 8, Issue 10
  • DOI: 10.1021/nn503884z

Semiconductor interfacial carrier dynamics via photoinduced electric fields
journal, November 2015


Chalcogenide passivation of III–V semiconductor surfaces
journal, November 1998

  • Bessolov, V. N.; Lebedev, M. V.
  • Semiconductors, Vol. 32, Issue 11
  • DOI: 10.1134/1.1187580

Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting
journal, February 2017


High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation
journal, November 2013


Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols
journal, January 2010

  • Chen, Zhebo; Jaramillo, Thomas F.; Deutsch, Todd G.
  • Journal of Materials Research, Vol. 25, Issue 1
  • DOI: 10.1557/JMR.2010.0020

Electrochemical Equilibria
book, January 1973

  • Pourbaix, Marcel; Staehle, Roger W.; Pourbaix, Marcel
  • Lectures on Electrochemical Corrosion, p 83-183
  • DOI: 10.1007/978-1-4684-1806-4_4

Direct Water Splitting under Visible Light with Nanostructured Hematite and WO[sub 3] Photoanodes and a GaInP[sub 2] Photocathode
journal, January 2008

  • Wang, Heli; Deutsch, Todd; Turner, John A.
  • Journal of The Electrochemical Society, Vol. 155, Issue 5
  • DOI: 10.1149/1.2888477

Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting
journal, January 2011

  • Oh, Jihun; Deutsch, Todd G.; Yuan, Hao-Chih
  • Energy & Environmental Science, Vol. 4, Issue 5
  • DOI: 10.1039/c1ee01124c

Role of TiO 2 Surface Passivation on Improving the Performance of p-InP Photocathodes
journal, February 2015

  • Lin, Yongjing; Kapadia, Rehan; Yang, Jinhui
  • The Journal of Physical Chemistry C, Vol. 119, Issue 5
  • DOI: 10.1021/jp5107313

Broadband antireflection and absorption enhancement of ultrathin silicon solar microcells enabled with density-graded surface nanostructures
journal, June 2014

  • Chan, Lesley; Kang, Dongseok; Lee, Sung-Min
  • Applied Physics Letters, Vol. 104, Issue 22
  • DOI: 10.1063/1.4881260

The stability of illuminated p-GaInP2 semiconductor photoelectrode
journal, October 2012


Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes
journal, May 2016

  • Britto, Reuben J.; Benck, Jesse D.; Young, James L.
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 11
  • DOI: 10.1021/acs.jpclett.6b00563

Materials for solar fuels and chemicals
journal, December 2016

  • Montoya, Joseph H.; Seitz, Linsey C.; Chakthranont, Pongkarn
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4778

Photoluminescence model of sulfur passivated p-InP nanowires
journal, July 2012


Renewable hydrogen production
journal, January 2008

  • Turner, John; Sverdrup, George; Mann, Margaret K.
  • International Journal of Energy Research, Vol. 32, Issue 5
  • DOI: 10.1002/er.1372

Water reduction by a p-GaInP2 photoelectrode stabilized by an amorphous TiO2 coating and a molecular cobalt catalyst
journal, December 2015

  • Gu, Jing; Yan, Yong; Young, James L.
  • Nature Materials, Vol. 15, Issue 4
  • DOI: 10.1038/nmat4511

Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation
journal, May 2014


Light-Induced Water Splitting with Hematite: Improved Nanostructure and Iridium Oxide Catalysis
journal, August 2010

  • Tilley, S. David; Cornuz, Maurin; Sivula, Kevin
  • Angewandte Chemie, Vol. 122, Issue 36
  • DOI: 10.1002/ange.201003110

Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions
journal, August 2017


Infrared Donor-Acceptor Pair Spectra Involving the Deep Oxygen Donor in Gallium Phosphide
journal, April 1968


Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting
journal, March 2017


Solar Water Splitting Cells
journal, November 2010

  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures
journal, March 2017

  • Young, James L.; Steiner, Myles A.; Döscher, Henning
  • Nature Energy, Vol. 2, Issue 4
  • DOI: 10.1038/nenergy.2017.28

Stability of GaInP2 in H2SO4 Solution for Photoelectrochemical Water Splitting
conference, January 2007

  • Wang, Heli; Turner, John
  • 209th ECS Meeting, ECS Transactions
  • DOI: 10.1149/1.2409036

Passivation mechanism analysis of sulfur-passivated InGaP surfaces using x-ray photoelectron spectroscopy
journal, May 2000

  • Tsai, Chang-Da; Lee, Ching-Ting
  • Journal of Applied Physics, Vol. 87, Issue 9
  • DOI: 10.1063/1.373057

High-Performance Flexible Nanostructured Silicon Solar Modules with Plasmonically Engineered Upconversion Medium
journal, August 2015

  • Lee, Sung-Min; Li, Weigu; Dhar, Purnim
  • Advanced Energy Materials, Vol. 5, Issue 21
  • DOI: 10.1002/aenm.201500761

Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures
journal, December 2007

  • Huang, Yi-Fan; Chattopadhyay, Surojit; Jen, Yi-Jun
  • Nature Nanotechnology, Vol. 2, Issue 12, p. 770-774
  • DOI: 10.1038/nnano.2007.389

Remarkable stability of unmodified GaAs photocathodes during hydrogen evolution in acidic electrolyte
journal, January 2016

  • Young, J. L.; Steirer, K. X.; Dzara, M. J.
  • Journal of Materials Chemistry A, Vol. 4, Issue 8
  • DOI: 10.1039/C5TA07648J

p-Type InP Nanopillar Photocathodes for Efficient Solar-Driven Hydrogen Production
journal, September 2012

  • Lee, Min Hyung; Takei, Kuniharu; Zhang, Junjun
  • Angewandte Chemie, Vol. 124, Issue 43
  • DOI: 10.1002/ange.201203174

High Performance Ultrathin GaAs Solar Cells Enabled with Heterogeneously Integrated Dielectric Periodic Nanostructures
journal, September 2015


A graded catalytic–protective layer for an efficient and stable water-splitting photocathode
journal, January 2017


Characterization of the Interface of Gold and Silver Nanostructures on InP and GaAs Synthesized via Galvanic Displacement
journal, July 2008

  • Sayed, Sayed Y.; Daly, Brian; Buriak, Jillian M.
  • The Journal of Physical Chemistry C, Vol. 112, Issue 32
  • DOI: 10.1021/jp803887g