DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Coupling a single electron on superfluid helium to a superconducting resonator

Abstract

Abstract Electrons on helium form a unique two-dimensional system on the interface of liquid helium and vacuum. A small number of trapped electrons on helium exhibits strong interactions in the absence of disorder, and can be used as a qubit. Trapped electrons typically have orbital frequencies in the microwave regime and can therefore be integrated with circuit quantum electrodynamics (cQED), which studies light–matter interactions using microwave photons. Here, we experimentally realize a cQED platform with the orbitals of single electrons on helium. We deterministically trap one to four electrons in a dot integrated with a microwave resonator, allowing us to study the electrons’ response to microwaves. Furthermore, we find a single-electron-photon coupling strength of $$$$g/2\pi =4.8\pm 0.3$$$$ g 2 π = 4.8 ± 0.3  MHz, greatly exceeding the resonator linewidth $$$$\kappa /2\pi =0.5$$$$ κ 2 π = 0.5  MHz. These results pave the way towards microwave studies of Wigner molecules and coherent control of the orbital and spin state of a single electron on helium.

Authors:
ORCiD logo; ;
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1619595
Alternate Identifier(s):
OSTI ID: 1591833
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Published Article
Journal Name:
Nature Communications
Additional Journal Information:
Journal Name: Nature Communications Journal Volume: 10 Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United Kingdom
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; quantum fluids and solids; quantum physics; superconducting devices

Citation Formats

Koolstra, Gerwin, Yang, Ge, and Schuster, David I. Coupling a single electron on superfluid helium to a superconducting resonator. United Kingdom: N. p., 2019. Web. doi:10.1038/s41467-019-13335-7.
Koolstra, Gerwin, Yang, Ge, & Schuster, David I. Coupling a single electron on superfluid helium to a superconducting resonator. United Kingdom. https://doi.org/10.1038/s41467-019-13335-7
Koolstra, Gerwin, Yang, Ge, and Schuster, David I. Fri . "Coupling a single electron on superfluid helium to a superconducting resonator". United Kingdom. https://doi.org/10.1038/s41467-019-13335-7.
@article{osti_1619595,
title = {Coupling a single electron on superfluid helium to a superconducting resonator},
author = {Koolstra, Gerwin and Yang, Ge and Schuster, David I.},
abstractNote = {Abstract Electrons on helium form a unique two-dimensional system on the interface of liquid helium and vacuum. A small number of trapped electrons on helium exhibits strong interactions in the absence of disorder, and can be used as a qubit. Trapped electrons typically have orbital frequencies in the microwave regime and can therefore be integrated with circuit quantum electrodynamics (cQED), which studies light–matter interactions using microwave photons. Here, we experimentally realize a cQED platform with the orbitals of single electrons on helium. We deterministically trap one to four electrons in a dot integrated with a microwave resonator, allowing us to study the electrons’ response to microwaves. Furthermore, we find a single-electron-photon coupling strength of $$g/2\pi =4.8\pm 0.3$$ g ∕ 2 π = 4.8 ± 0.3  MHz, greatly exceeding the resonator linewidth $$\kappa /2\pi =0.5$$ κ ∕ 2 π = 0.5  MHz. These results pave the way towards microwave studies of Wigner molecules and coherent control of the orbital and spin state of a single electron on helium.},
doi = {10.1038/s41467-019-13335-7},
journal = {Nature Communications},
number = 1,
volume = 10,
place = {United Kingdom},
year = {Fri Nov 22 00:00:00 EST 2019},
month = {Fri Nov 22 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1038/s41467-019-13335-7

Citation Metrics:
Cited by: 23 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Single-File Transport of Classical Electrons on the Surface of Liquid Helium
journal, December 2014


Addition spectra of Wigner islands of electrons on superfluid helium
journal, January 2009


Spin readout of trapped electron qubits
journal, January 2017


Classical and quantum Coulomb crystals
journal, May 2008

  • Bonitz, M.; Ludwig, P.; Baumgartner, H.
  • Physics of Plasmas, Vol. 15, Issue 5
  • DOI: 10.1063/1.2839297

Imaging the electronic Wigner crystal in one dimension
journal, May 2019


Counting Individual Trapped Electrons on Liquid Helium
journal, April 2005

  • Papageorgiou, G.; Glasson, P.; Harrabi, K.
  • Applied Physics Letters, Vol. 86, Issue 15
  • DOI: 10.1063/1.1900301

ac Stark Shift and Dephasing of a Superconducting Qubit Strongly Coupled to a Cavity Field
journal, March 2005


Observation of the frozen charge of a Kondo resonance
journal, April 2017

  • Desjardins, M. M.; Viennot, J. J.; Dartiailh, M. C.
  • Nature, Vol. 545, Issue 7652
  • DOI: 10.1038/nature21704

Electrically driven single-electron spin resonance in a slanting Zeeman field
journal, August 2008

  • Pioro-Ladrière, M.; Obata, T.; Tokura, Y.
  • Nature Physics, Vol. 4, Issue 10
  • DOI: 10.1038/nphys1053

A coherent spin–photon interface in silicon
journal, February 2018


Classical model of a Wigner crystal in a quantum dot
journal, March 1993


Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon
journal, January 2017

  • Mi, X.; Cady, J. V.; Zajac, D. M.
  • Applied Physics Letters, Vol. 110, Issue 4
  • DOI: 10.1063/1.4974536

Spin-based quantum computing using electrons on liquid helium
journal, November 2006


Hybrid quantum systems with trapped charged particles
journal, February 2017


Quantum Computing with Electrons Floating on Liquid Helium
journal, June 1999


Coherent coupling of a single spin to microwave cavity photons
journal, July 2015


Strong coupling of a single electron in silicon to a microwave photon
journal, December 2016


Quantum information processing with trapped electrons and superconducting electronics
journal, July 2013


Strong spin-photon coupling in silicon
journal, January 2018


Formation of Wigner molecules in small quantum dots
journal, September 2000


Wigner Crystallization in Mesoscopic 2D Electron Systems
journal, April 2001


Design of a scanning gate microscope for mesoscopic electron systems in a cryogen-free dilution refrigerator
journal, March 2013

  • Pelliccione, M.; Sciambi, A.; Bartel, J.
  • Review of Scientific Instruments, Vol. 84, Issue 3
  • DOI: 10.1063/1.4794767

Stability of two-dimensional electrons on a fractionated helium surface
journal, October 1986


Observation and spectroscopy of a two-electron Wigner molecule in an ultraclean carbon nanotube
journal, July 2013

  • Pecker, S.; Kuemmeth, F.; Secchi, A.
  • Nature Physics, Vol. 9, Issue 9
  • DOI: 10.1038/nphys2692

Active cancellation of acoustical resonances with an FPGA FIR filter
journal, January 2017

  • Ryou, Albert; Simon, Jonathan
  • Review of Scientific Instruments, Vol. 88, Issue 1
  • DOI: 10.1063/1.4973470

Atomic-Like Properties of Semiconductor Quantum Dots
journal, June 1997

  • Tarucha, Seigo; Austing, David Guy; Honda, Takashi
  • Japanese Journal of Applied Physics, Vol. 36, Issue Part 1, No. 6B
  • DOI: 10.1143/JJAP.36.3917

Atomic layer deposition of titanium nitride for quantum circuits
journal, November 2018

  • Shearrow, Abigail; Koolstra, Gerwin; Whiteley, Samuel J.
  • Applied Physics Letters, Vol. 113, Issue 21
  • DOI: 10.1063/1.5053461

Wigner molecules in quantum dots: A quantum Monte Carlo study
journal, January 2002