DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Overcoming Carrier Concentration Limits in Polycrystalline CdTe Thin Films with In Situ Doping

Abstract

Abstract Thin film materials for photovoltaics such as cadmium telluride (CdTe), copper-indium diselenide-based chalcopyrites (CIGS), and lead iodide-based perovskites offer the potential of lower solar module capital costs and improved performance to microcrystalline silicon. However, for decades understanding and controlling hole and electron concentration in these polycrystalline films has been extremely challenging and limiting. Ionic bonding between constituent atoms often leads to tenacious intrinsic compensating defect chemistries that are difficult to control. Device modeling indicates that increasing CdTe hole density while retaining carrier lifetimes of several nanoseconds can increase solar cell efficiency to 25%. This paper describes in-situ Sb, As, and P doping and post-growth annealing that increases hole density from historic 10 14 limits to 10 16 –10 17 cm −3 levels without compromising lifetime in thin polycrystalline CdTe films, which opens paths to advance solar performance and achieve costs below conventional electricity sources.

Authors:
ORCiD logo; ; ORCiD logo; ; ORCiD logo; ; ; ; ORCiD logo; ; ; ORCiD logo; ;
Publication Date:
Research Org.:
National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1619583
Alternate Identifier(s):
OSTI ID: 1478186
Report Number(s):
NREL/JA-5K00-72611
Journal ID: ISSN 2045-2322; 14519; PII: 32746
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Published Article
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Name: Scientific Reports Journal Volume: 8 Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United Kingdom
Language:
English
Subject:
14 SOLAR ENERGY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; semiconductors; solar cells; thin films; solar performance

Citation Formats

McCandless, Brian E., Buchanan, Wayne A., Thompson, Christopher P., Sriramagiri, Gowri, Lovelett, Robert J., Duenow, Joel, Albin, David, Jensen, Søren, Colegrove, Eric, Moseley, John, Moutinho, Helio, Harvey, Steve, Al-Jassim, Mowafak, and Metzger, Wyatt K. Overcoming Carrier Concentration Limits in Polycrystalline CdTe Thin Films with In Situ Doping. United Kingdom: N. p., 2018. Web. doi:10.1038/s41598-018-32746-y.
McCandless, Brian E., Buchanan, Wayne A., Thompson, Christopher P., Sriramagiri, Gowri, Lovelett, Robert J., Duenow, Joel, Albin, David, Jensen, Søren, Colegrove, Eric, Moseley, John, Moutinho, Helio, Harvey, Steve, Al-Jassim, Mowafak, & Metzger, Wyatt K. Overcoming Carrier Concentration Limits in Polycrystalline CdTe Thin Films with In Situ Doping. United Kingdom. https://doi.org/10.1038/s41598-018-32746-y
McCandless, Brian E., Buchanan, Wayne A., Thompson, Christopher P., Sriramagiri, Gowri, Lovelett, Robert J., Duenow, Joel, Albin, David, Jensen, Søren, Colegrove, Eric, Moseley, John, Moutinho, Helio, Harvey, Steve, Al-Jassim, Mowafak, and Metzger, Wyatt K. Fri . "Overcoming Carrier Concentration Limits in Polycrystalline CdTe Thin Films with In Situ Doping". United Kingdom. https://doi.org/10.1038/s41598-018-32746-y.
@article{osti_1619583,
title = {Overcoming Carrier Concentration Limits in Polycrystalline CdTe Thin Films with In Situ Doping},
author = {McCandless, Brian E. and Buchanan, Wayne A. and Thompson, Christopher P. and Sriramagiri, Gowri and Lovelett, Robert J. and Duenow, Joel and Albin, David and Jensen, Søren and Colegrove, Eric and Moseley, John and Moutinho, Helio and Harvey, Steve and Al-Jassim, Mowafak and Metzger, Wyatt K.},
abstractNote = {Abstract Thin film materials for photovoltaics such as cadmium telluride (CdTe), copper-indium diselenide-based chalcopyrites (CIGS), and lead iodide-based perovskites offer the potential of lower solar module capital costs and improved performance to microcrystalline silicon. However, for decades understanding and controlling hole and electron concentration in these polycrystalline films has been extremely challenging and limiting. Ionic bonding between constituent atoms often leads to tenacious intrinsic compensating defect chemistries that are difficult to control. Device modeling indicates that increasing CdTe hole density while retaining carrier lifetimes of several nanoseconds can increase solar cell efficiency to 25%. This paper describes in-situ Sb, As, and P doping and post-growth annealing that increases hole density from historic 10 14 limits to 10 16 –10 17 cm −3 levels without compromising lifetime in thin polycrystalline CdTe films, which opens paths to advance solar performance and achieve costs below conventional electricity sources.},
doi = {10.1038/s41598-018-32746-y},
journal = {Scientific Reports},
number = 1,
volume = 8,
place = {United Kingdom},
year = {Fri Sep 28 00:00:00 EDT 2018},
month = {Fri Sep 28 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1038/s41598-018-32746-y

Citation Metrics:
Cited by: 69 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

3D Lifetime Tomography Reveals How CdCl 2 Improves Recombination Throughout CdTe Solar Cells
journal, November 2016

  • Barnard, Edward S.; Ursprung, Benedikt; Colegrove, Eric
  • Advanced Materials, Vol. 29, Issue 3
  • DOI: 10.1002/adma.201603801

Impurity Segregation in Binary Compounds
journal, January 1966

  • Lorenz, M. R.; Blum, S. E.
  • Journal of The Electrochemical Society, Vol. 113, Issue 6
  • DOI: 10.1149/1.2424026

Sublimation thermodynamics of Cd3P2
journal, January 1976

  • Lazarev, V. B.; Greenberg, J. H.; Shevchenko, V. J.
  • The Journal of Chemical Thermodynamics, Vol. 8, Issue 1
  • DOI: 10.1016/0021-9614(76)90151-8

Chemical trends of defect formation and doping limit in II-VI semiconductors: The case of CdTe
journal, October 2002


High-temperature defect structure of Cd- and Te-rich CdTe
journal, June 2002


First-Principles Study of Doping Limits of CdTe
journal, January 2002


Experimental and theoretical comparison of Sb, As, and P diffusion mechanisms and doping in CdTe
journal, January 2018

  • Colegrove, E.; Yang, J-H; Harvey, S. P.
  • Journal of Physics D: Applied Physics, Vol. 51, Issue 7
  • DOI: 10.1088/1361-6463/aaa67e

CdTe Solar Cells: Processing Limits and Defect Chemistry Effects on Open Circuit Voltage
journal, January 2013


First-principles study of roles of Cu and Cl in polycrystalline CdTe
journal, January 2016

  • Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang
  • Journal of Applied Physics, Vol. 119, Issue 4
  • DOI: 10.1063/1.4940722

The roles of carrier concentration and interface, bulk, and grain-boundary recombination for 25% efficient CdTe solar cells
journal, June 2017

  • Kanevce, A.; Reese, M. O.; Barnes, T. M.
  • Journal of Applied Physics, Vol. 121, Issue 21
  • DOI: 10.1063/1.4984320

In Situ Arsenic Doping of CdTe/Si by Molecular Beam Epitaxy
journal, July 2015


A Thermodynamic Study of the Lead-Antimony System
journal, October 1939

  • Seltz, Harry.; DeWitt, Bernard J.
  • Journal of the American Chemical Society, Vol. 61, Issue 10
  • DOI: 10.1021/ja01265a007

Quantitative determination of grain boundary recombination velocity in CdTe by combination of cathodoluminescence measurements and numerical simulations
conference, June 2015

  • Kanevce, Ana; Moseley, John; Kuciauskas, Darius
  • 2015 IEEE 42nd Photovoltaic Specialists Conference (PVSC), 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC)
  • DOI: 10.1109/PVSC.2015.7355654

Time-resolved photoluminescence studies of CdTe solar cells
journal, September 2003

  • Metzger, W. K.; Albin, D.; Levi, D.
  • Journal of Applied Physics, Vol. 94, Issue 5, p. 3549-3555
  • DOI: 10.1063/1.1597974

p ‐type arsenic doping of CdTe and HgTe/CdTe superlattices grown by photoassisted and conventional molecular‐beam epitaxy
journal, March 1990

  • Arias, J. M.; Shin, S. H.; Cooper, D. E.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 8, Issue 2
  • DOI: 10.1116/1.577000

Defect interactions and the role of complexes in the CdTe solar cell absorber
journal, January 2017

  • Krasikov, Dmitry; Sankin, Igor
  • Journal of Materials Chemistry A, Vol. 5, Issue 7
  • DOI: 10.1039/C6TA09155E

Long carrier lifetimes in large-grain polycrystalline CdTe without CdCl2
journal, June 2016

  • Jensen, S. A.; Burst, J. M.; Duenow, J. N.
  • Applied Physics Letters, Vol. 108, Issue 26
  • DOI: 10.1063/1.4954904

Design of a vapor transport deposition process for thin film materials
journal, September 2006

  • Hanket, G. M.; McCandless, B. E.; Buchanan, W. A.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 24, Issue 5
  • DOI: 10.1116/1.2214689

Impurity doping and compensation mechanisms in CdTe
journal, May 2001


Probing Diffusion Kinetics with Secondary Ion Mass Spectrometry
journal, December 2009


Luminescent Properties of Sb Doped CdTe Grown by Hot-Wall Epitaxy
journal, January 2002


Theoretical analysis of effects of deep level, back contact, and absorber thickness on capacitance–voltage profiling of CdTe thin-film solar cells
journal, May 2012


Photoluminescence of CdTe doped with arsenic and antimony acceptors
journal, November 1995

  • Soltani, M.; Certier, M.; Evrard, R.
  • Journal of Applied Physics, Vol. 78, Issue 9
  • DOI: 10.1063/1.359686

Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance
journal, January 1998


Carrier density and lifetime for different dopants in single-crystal and polycrystalline CdTe
journal, November 2016

  • Burst, James M.; Farrell, Stuart B.; Albin, David S.
  • APL Materials, Vol. 4, Issue 11
  • DOI: 10.1063/1.4966209

Identification of the cadmium vacancy in CdTe by electron paramagnetic resonance
journal, June 1993


Organic solar cells: Going green
journal, January 2016


Controlled p ‐type impurity doping of HgTe‐CdTe superlattices during molecular‐beam‐epitaxial growth
journal, February 1989

  • Peterman, D. J.; Wroge, M. L.; Morris, B. J.
  • Journal of Applied Physics, Vol. 65, Issue 4
  • DOI: 10.1063/1.342971

Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals
journal, April 1998

  • Wei, Su-Huai; Zunger, Alex
  • Applied Physics Letters, Vol. 72, Issue 16
  • DOI: 10.1063/1.121249

Some Diffusion and Solubility Measurements of Cu in CdTe
journal, November 1968

  • Woodbury, H. H.; Aven, M.
  • Journal of Applied Physics, Vol. 39, Issue 12
  • DOI: 10.1063/1.1655999