DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Megahertz-rate shock-wave distortion cancellation via phase conjugate digital in-line holography

Abstract

Abstract Holography is a powerful tool for three-dimensional imaging. However, in explosive, supersonic, hypersonic, cavitating, or ionizing environments, shock-waves and density gradients impart phase distortions that obscure objects in the field-of-view. Capturing time-resolved information in these environments also requires ultra-high-speed acquisition. To reduce phase distortions and increase imaging rates, we introduce an ultra-high-speed phase conjugate digital in-line holography (PCDIH) technique. In this concept, a coherent beam passes through the shock-wave distortion, reflects off a phase conjugate mirror, and propagates back through the shock-wave, thereby minimizing imaging distortions from phase delays. By implementing the method using a pulse-burst laser setup at up to 5 million-frames-per-second, time-resolved holograms of ultra-fast events are now possible. This technique is applied for holographic imaging through laser-spark plasma-generated shock-waves and to enable three-dimensional tracking of explosively generated hypersonic fragments. Simulations further advance our understanding of physical processes and experiments demonstrate ultra-high-speed PCDIH techniques for capturing dynamics.

Authors:
; ORCiD logo; ; ORCiD logo; ORCiD logo
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1619579
Alternate Identifier(s):
OSTI ID: 1624254
Grant/Contract Number:  
NA0003525
Resource Type:
Published Article
Journal Name:
Nature Communications
Additional Journal Information:
Journal Name: Nature Communications Journal Volume: 11 Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United Kingdom
Language:
English
Subject:
Science & Technology - Other Topics

Citation Formats

Mazumdar, Yi Chen, Smyser, Michael E., Heyborne, Jeffery D., Slipchenko, Mikhail N., and Guildenbecher, Daniel R. Megahertz-rate shock-wave distortion cancellation via phase conjugate digital in-line holography. United Kingdom: N. p., 2020. Web. doi:10.1038/s41467-020-14868-y.
Mazumdar, Yi Chen, Smyser, Michael E., Heyborne, Jeffery D., Slipchenko, Mikhail N., & Guildenbecher, Daniel R. Megahertz-rate shock-wave distortion cancellation via phase conjugate digital in-line holography. United Kingdom. https://doi.org/10.1038/s41467-020-14868-y
Mazumdar, Yi Chen, Smyser, Michael E., Heyborne, Jeffery D., Slipchenko, Mikhail N., and Guildenbecher, Daniel R. Fri . "Megahertz-rate shock-wave distortion cancellation via phase conjugate digital in-line holography". United Kingdom. https://doi.org/10.1038/s41467-020-14868-y.
@article{osti_1619579,
title = {Megahertz-rate shock-wave distortion cancellation via phase conjugate digital in-line holography},
author = {Mazumdar, Yi Chen and Smyser, Michael E. and Heyborne, Jeffery D. and Slipchenko, Mikhail N. and Guildenbecher, Daniel R.},
abstractNote = {Abstract Holography is a powerful tool for three-dimensional imaging. However, in explosive, supersonic, hypersonic, cavitating, or ionizing environments, shock-waves and density gradients impart phase distortions that obscure objects in the field-of-view. Capturing time-resolved information in these environments also requires ultra-high-speed acquisition. To reduce phase distortions and increase imaging rates, we introduce an ultra-high-speed phase conjugate digital in-line holography (PCDIH) technique. In this concept, a coherent beam passes through the shock-wave distortion, reflects off a phase conjugate mirror, and propagates back through the shock-wave, thereby minimizing imaging distortions from phase delays. By implementing the method using a pulse-burst laser setup at up to 5 million-frames-per-second, time-resolved holograms of ultra-fast events are now possible. This technique is applied for holographic imaging through laser-spark plasma-generated shock-waves and to enable three-dimensional tracking of explosively generated hypersonic fragments. Simulations further advance our understanding of physical processes and experiments demonstrate ultra-high-speed PCDIH techniques for capturing dynamics.},
doi = {10.1038/s41467-020-14868-y},
journal = {Nature Communications},
number = 1,
volume = 11,
place = {United Kingdom},
year = {Fri Feb 28 00:00:00 EST 2020},
month = {Fri Feb 28 00:00:00 EST 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1038/s41467-020-14868-y

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media
journal, November 2014


Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames
journal, January 2015

  • Michael, James B.; Venkateswaran, Prabhakar; Shaddix, Christopher R.
  • Applied Optics, Vol. 54, Issue 11
  • DOI: 10.1364/AO.54.003331

Characterization of hypervelocity metal fragments for explosive initiation
journal, July 2017

  • Yeager, John D.; Bowden, Patrick R.; Guildenbecher, Daniel R.
  • Journal of Applied Physics, Vol. 122, Issue 3
  • DOI: 10.1063/1.4993287

Digital optical phase conjugation for delivering two-dimensional images through turbid media
journal, May 2013

  • Hillman, Timothy R.; Yamauchi, Toyohiko; Choi, Wonshik
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01909

Numerical investigation of nanosecond laser induced plasma and shock wave dynamics from air using 2D hydrodynamic code
journal, August 2017

  • Sai Shiva, S.; Leela, Ch.; Prem Kiran, P.
  • Physics of Plasmas, Vol. 24, Issue 8
  • DOI: 10.1063/1.4997449

Image transmission and interferometry with multimode fibers using self‐pumped phase conjugation
journal, January 1985

  • Fischer, Baruch; Sternklar, Shmuel
  • Applied Physics Letters, Vol. 46, Issue 2
  • DOI: 10.1063/1.95703

Interference and holography with femtosecond laser pulses of different colours
journal, February 2015

  • Odoulov, Serguey; Shumelyuk, Alexandr; Badorreck, Holger
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms6866

Pulse-burst PIV in a high-speed wind tunnel
journal, July 2015


High‐speed holography of laser‐induced breakdown in liquids
journal, November 1977

  • Lauterborn, W.; Ebeling, K. J.
  • Applied Physics Letters, Vol. 31, Issue 10
  • DOI: 10.1063/1.89495

Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames
journal, January 2011

  • Jiang, Naibo; Patton, Randy A.; Lempert, Walter R.
  • Proceedings of the Combustion Institute, Vol. 33, Issue 1
  • DOI: 10.1016/j.proci.2010.05.080

Elimination of the Unwanted Image in Diffraction Microscopy
journal, February 1951

  • Bragg, W. L.; Rogers, G. L.
  • Nature, Vol. 167, Issue 4240
  • DOI: 10.1038/167190a0

Aerodynamic Breakup and Secondary Drop Formation for a Liquid Metal Column in a Shock-Induced Cross-Flow
conference, January 2017

  • Chen, Yi; DeMauro, Edward P.; Wagner, Justin L.
  • 55th AIAA Aerospace Sciences Meeting
  • DOI: 10.2514/6.2017-1892

One-Wave Optical Phase Conjugation Mirror by Actively Coupling Arbitrary Light Fields into a Single-Mode Reflector
journal, October 2015


Optical phase conjugation for turbidity suppression in biological samples
journal, January 2008


Phase conjugate optics and real-time holography
journal, September 1978


Digital phase conjugate mirror by parallel arrangement of two phase-only spatial light modulators
journal, January 2014

  • Shibukawa, Atsushi; Okamoto, Atsushi; Goto, Yuta
  • Optics Express, Vol. 22, Issue 10
  • DOI: 10.1364/OE.22.011918

Optical phase conjugation reflectivity and fidelity in CS 2 by picosecond pulse four wave mixing
journal, November 1988

  • Van Wonterghem, B.; Dutton, T. E.; Saltiel, S. M.
  • Journal of Applied Physics, Vol. 64, Issue 9
  • DOI: 10.1063/1.341308

Imaging of Optical Modes - Resonators with Internal Lenses
journal, March 1965


Study of aluminum particle combustion in solid propellant plumes using digital in-line holography and imaging pyrometry
journal, August 2017


Ultra-high-speed tomographic digital holographic velocimetry in supersonic particle-laden jet flows
journal, December 2012


Diagnostic of Laser-Induced Plasma Using Abel Inversion and Radiation Modeling
journal, August 2013

  • Merk, Sven; Demidov, Alexander; Shelby, Daniel
  • Applied Spectroscopy, Vol. 67, Issue 8
  • DOI: 10.1366/12-06929

Ultra-High-Speed Digital In-Line Holography System Applied to Particle-Laden Supersonic Underexpanded Jet Flows
conference, September 2012

  • Ingvorsen, Kristian; Buchmann, Nicolas; Soria, Julio
  • 28th Aerodynamic Measurement Technology, Ground Testing, and Flight Testing Conference
  • DOI: 10.2514/6.2012-3115

Reversible holography and optical phase conjugation for image formation/correction using highly efficient organic photorefractive polymers
journal, December 2015

  • Maldonado, José-Luis; Herrera-Ambriz, Víctor-Manuel; Rodríguez, Mario
  • Journal of Applied Research and Technology, Vol. 13, Issue 6
  • DOI: 10.1016/j.jart.2015.10.007

Practical algorithms for simulation and reconstruction of digital in-line holograms
journal, January 2015

  • Latychevskaia, Tatiana; Fink, Hans-Werner
  • Applied Optics, Vol. 54, Issue 9
  • DOI: 10.1364/AO.54.002424

A New Microscopic Principle
journal, May 1948


Progress Towards Real-Time Planar Doppler Velocimetry
conference, November 2012

  • Thurow, Brian; Samimy, Mo; Lempert, Walter
  • 41st Aerospace Sciences Meeting and Exhibit
  • DOI: 10.2514/6.2003-916

Conjugate wave‐front generation and image reconstruction by four‐wave mixing
journal, November 1977

  • Bloom, D. M.; Bjorklund, G. C.
  • Applied Physics Letters, Vol. 31, Issue 9
  • DOI: 10.1063/1.89791

Optical phase conjugation: principles, techniques, and applications
journal, May 2002


Time-resolved digital in-line holography and pyrometry for aluminized solid rocket propellants
conference, January 2018

  • Chen, Yi; Heyborne, Jeffery D.; Guildenbecher, Daniel R.
  • Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP)
  • DOI: 10.1364/LACSEA.2018.LTu3C.5

Digital in-line holography assessment for general phase and opaque particle
journal, January 2014

  • Coetmellec, S.; Wichitwong, W.; Grehan, G.
  • Journal of the European Optical Society: Rapid Publications, Vol. 9
  • DOI: 10.2971/jeos.2014.14021

Simultaneous amplitude and phase contrast imaging of burning fuel particle and flame with digital inline holography: Model and verification
journal, September 2017

  • Wu, Yingchun; Brunel, Marc; Li, Renxian
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 199
  • DOI: 10.1016/j.jqsrt.2017.05.008

Scattering compensation by focus scanning holographic aberration probing (F-SHARP)
journal, December 2016

  • Papadopoulos, Ioannis N.; Jouhanneau, Jean-Sébastien; Poulet, James F. A.
  • Nature Photonics, Vol. 11, Issue 2
  • DOI: 10.1038/nphoton.2016.252

Agglomerate Sizing in Aluminized Propellants Using Digital Inline Holography and Traditional Diagnostics
journal, July 2018

  • Powell, Michael S.; Gunduz, Ibrahim W.; Shang, Weixiao
  • Journal of Propulsion and Power, Vol. 34, Issue 4
  • DOI: 10.2514/1.B36859

Galinstan liquid metal breakup and droplet formation in a shock-induced cross-flow
journal, September 2018


FRAME: femtosecond videography for atomic and molecular dynamics
journal, March 2017

  • Ehn, Andreas; Bood, Joakim; Li, Zheming
  • Light: Science & Applications, Vol. 6, Issue 9
  • DOI: 10.1038/lsa.2017.45

kHz Rate Digital In-line Holography Applied to Quantify Secondary Droplets from the Aerodynamic Breakup of a Liquid Column in a Shock-Tube
conference, January 2016

  • Guildenbecher, Daniel R.; Wagner, Justin L.; Olles, Joseph D.
  • 54th AIAA Aerospace Sciences Meeting
  • DOI: 10.2514/6.2016-1044

Optical Refractivity of High-Temperature Gases. II. Effects Resulting from Ionization of Monatomic Gases
journal, January 1959

  • Alpher, Ralph A.; White, Donald R.
  • Physics of Fluids, Vol. 2, Issue 2
  • DOI: 10.1063/1.1705907

Optical Refractivity of High-Temperature Gases. I. Effects Resulting from Dissociation of Diatomic Gases
journal, January 1959

  • Alpher, Ralph A.; White, Donald R.
  • Physics of Fluids, Vol. 2, Issue 2
  • DOI: 10.1063/1.1705906

Ultra-high-speed Pulse-burst Phase Conjugate Digital In-line Holography for Imaging Through Shock-wave Distortions
conference, January 2019

  • Chen, Yi; Heyborne, Jeffery; Guildenbecher, Daniel R.
  • AIAA Scitech 2019 Forum
  • DOI: 10.2514/6.2019-1602

Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror
journal, January 1997

  • Yoshida, Hidetsugu; Kmetik, Villiam; Fujita, Hisanori
  • Applied Optics, Vol. 36, Issue 16
  • DOI: 10.1364/AO.36.003739

Image fidelity improvement in digital holographic microscopy using optical phase conjugation
journal, January 2018


Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)
journal, March 2013

  • Judkewitz, Benjamin; Wang, Ying Min; Horstmeyer, Roarke
  • Nature Photonics, Vol. 7, Issue 4
  • DOI: 10.1038/nphoton.2013.31

Twin-Image-Free Holography: A Compressive Sensing Approach
journal, August 2018