skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Broadband achromatic dielectric metalenses

Abstract

Metasurfaces offer a unique platform to precisely control optical wavefronts and enable the realization of flat lenses, or metalenses, which have the potential to substantially reduce the size and complexity of imaging systems and to realize new imaging modalities. However, it is a major challenge to create achromatic metalenses that produce a single focal length over a broad wavelength range because of the difficulty in simultaneously engineering phase profiles at distinct wavelengths on a single metasurface. For practical applications, there is a further challenge to create broadband achromatic metalenses that work in the transmission mode for incident light waves with any arbitrary polarization state. We developed a design methodology and created libraries of meta-units—building blocks of metasurfaces—with complex cross-sectional geometries to provide diverse phase dispersions (phase as a function of wavelength), which is crucial for creating broadband achromatic metalenses. We elucidated the fundamental limitations of achromatic metalens performance by deriving mathematical equations that govern the tradeoffs between phase dispersion and achievable lens parameters, including the lens diameter, numerical aperture (NA), and bandwidth of achromatic operation. We experimentally demonstrated several dielectric achromatic metalenses reaching the fundamental limitations. These metalenses work in the transmission mode with polarization-independent focusing efficiencies up to 50%more » and continuously provide a near-constant focal length over λ = 1200–1650 nm. As a result, these unprecedented properties represent a major advance compared to the state of the art and a major step toward practical implementations of metalenses.« less

Authors:
; ; ORCiD logo; ;
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1619560
Alternate Identifier(s):
OSTI ID: 1487249
Report Number(s):
BNL-209750-2018-JAAM
Journal ID: ISSN 2047-7538; 85; PII: 78
Grant/Contract Number:  
SC0012704
Resource Type:
Published Article
Journal Name:
Light, Science & Applications
Additional Journal Information:
Journal Name: Light, Science & Applications Journal Volume: 7 Journal Issue: 1; Journal ID: ISSN 2047-7538
Publisher:
Nature Publishing Group
Country of Publication:
United Kingdom
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; optics; metamaterials; nanofabrication

Citation Formats

Shrestha, Sajan, Overvig, Adam C., Lu, Ming, Stein, Aaron, and Yu, Nanfang. Broadband achromatic dielectric metalenses. United Kingdom: N. p., 2018. Web. doi:10.1038/s41377-018-0078-x.
Shrestha, Sajan, Overvig, Adam C., Lu, Ming, Stein, Aaron, & Yu, Nanfang. Broadband achromatic dielectric metalenses. United Kingdom. doi:10.1038/s41377-018-0078-x.
Shrestha, Sajan, Overvig, Adam C., Lu, Ming, Stein, Aaron, and Yu, Nanfang. Wed . "Broadband achromatic dielectric metalenses". United Kingdom. doi:10.1038/s41377-018-0078-x.
@article{osti_1619560,
title = {Broadband achromatic dielectric metalenses},
author = {Shrestha, Sajan and Overvig, Adam C. and Lu, Ming and Stein, Aaron and Yu, Nanfang},
abstractNote = {Metasurfaces offer a unique platform to precisely control optical wavefronts and enable the realization of flat lenses, or metalenses, which have the potential to substantially reduce the size and complexity of imaging systems and to realize new imaging modalities. However, it is a major challenge to create achromatic metalenses that produce a single focal length over a broad wavelength range because of the difficulty in simultaneously engineering phase profiles at distinct wavelengths on a single metasurface. For practical applications, there is a further challenge to create broadband achromatic metalenses that work in the transmission mode for incident light waves with any arbitrary polarization state. We developed a design methodology and created libraries of meta-units—building blocks of metasurfaces—with complex cross-sectional geometries to provide diverse phase dispersions (phase as a function of wavelength), which is crucial for creating broadband achromatic metalenses. We elucidated the fundamental limitations of achromatic metalens performance by deriving mathematical equations that govern the tradeoffs between phase dispersion and achievable lens parameters, including the lens diameter, numerical aperture (NA), and bandwidth of achromatic operation. We experimentally demonstrated several dielectric achromatic metalenses reaching the fundamental limitations. These metalenses work in the transmission mode with polarization-independent focusing efficiencies up to 50% and continuously provide a near-constant focal length over λ = 1200–1650 nm. As a result, these unprecedented properties represent a major advance compared to the state of the art and a major step toward practical implementations of metalenses.},
doi = {10.1038/s41377-018-0078-x},
journal = {Light, Science & Applications},
number = 1,
volume = 7,
place = {United Kingdom},
year = {2018},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1038/s41377-018-0078-x

Citation Metrics:
Cited by: 31 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Comparison between monochromatic metasurface lenses and achromatic lenses. a Schematic of a monochromatic metalens composed of simple cylindrical meta-units, showing diffractive dispersion (focal length proportional to frequency). b Schematic of a broadband achromatic metalens composed of meta-units with complex cross sections, showing dispersionless focusing. c Spatial (left panel)more » and spectral (right panel) phase profiles required for a sample achromatic metalens (radius of 50 µm, focal length of 100 µm, operating in the wavelength range of λ= 1.3–1.8 µm) designed with the conventional choice of C(ω) = $\frac{ω}{c}$f. Three different frequencies are represented by three colors, and three positions are represented by different symbols. d Similar diagrams as in c but for our choice of C(ω) = $\frac{ω}{c}$ √r$2\atop{0}$ + f2 e, f Requirements of meta-units for the metalens in the phase-dispersion space, where ϕ0 is the phase of the smallest frequency and the dispersion Δϕ = $\frac{dϕ}{dω}$Δω for a given bandwidth Δω is the difference in phase between the largest and smallest frequencies« less

Save / Share:

Works referenced in this record:

Metal-Assisted Chemical Etching of Silicon: A Review
journal, September 2010

  • Huang, Zhipeng; Geyer, Nadine; Werner, Peter
  • Advanced Materials, Vol. 23, Issue 2, p. 285-308
  • DOI: 10.1002/adma.201001784

Broadband Focusing Flat Mirrors Based on Plasmonic Gradient Metasurfaces
journal, January 2013

  • Pors, Anders; Nielsen, Michael G.; Eriksen, René Lynge
  • Nano Letters, Vol. 13, Issue 2
  • DOI: 10.1021/nl304761m

A broadband achromatic metalens in the visible
journal, January 2018


Scalar and Tensor Holographic Artificial Impedance Surfaces
journal, October 2010

  • Fong, Bryan H.; Colburn, Joseph S.; Ottusch, John J.
  • IEEE Transactions on Antennas and Propagation, Vol. 58, Issue 10
  • DOI: 10.1109/TAP.2010.2055812

Broadband achromatic optical metasurface devices
journal, August 2017


Flat dielectric grating reflectors with focusing abilities
journal, May 2010


Optical fiber meta-tips
journal, September 2016

  • Principe, Maria; Consales, Marco; Micco, Alberto
  • Light: Science & Applications, Vol. 6, Issue 3
  • DOI: 10.1038/lsa.2016.226

Nanofabrication on unconventional substrates using transferred hard masks
journal, January 2015

  • Li, Luozhou; Bayn, Igal; Lu, Ming
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep07802

Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations
journal, November 2016

  • Arbabi, Amir; Arbabi, Ehsan; Kamali, Seyedeh Mahsa
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13682

Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces
journal, January 2017


Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules
journal, January 2016


Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission
journal, August 2015

  • Arbabi, Amir; Horie, Yu; Bagheri, Mahmood
  • Nature Nanotechnology, Vol. 10, Issue 11, p. 937-943
  • DOI: 10.1038/nnano.2015.186

Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings
journal, January 2001

  • Bomzon, Ze’ev; Kleiner, Vladimir; Hasman, Erez
  • Optics Letters, Vol. 26, Issue 18
  • DOI: 10.1364/OL.26.001424

A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces
journal, February 2012

  • Yu, Nanfang; Aieta, Francesco; Genevet, Patrice
  • Nano Letters, Vol. 12, Issue 12
  • DOI: 10.1021/nl303445u

Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays
journal, May 2015

  • Arbabi, Amir; Horie, Yu; Ball, Alexander J.
  • Nature Communications, Vol. 6, Article No. 7069
  • DOI: 10.1038/ncomms8069

An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials
journal, April 2012

  • Holloway, C. L.; Kuester, E. F.; Gordon, J. A.
  • IEEE Antennas and Propagation Magazine, Vol. 54, Issue 2
  • DOI: 10.1109/MAP.2012.6230714

All-dielectric metamaterials
journal, January 2016


Broadband Light Bending with Plasmonic Nanoantennas
journal, December 2011


Metasurface holograms reaching 80% efficiency
journal, February 2015

  • Zheng, Guoxing; Mühlenbernd, Holger; Kenney, Mitchell
  • Nature Nanotechnology, Vol. 10, Issue 4, p. 308-312
  • DOI: 10.1038/nnano.2015.2

Plasmonic meta-atoms and metasurfaces
journal, November 2014


Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency
journal, December 2014

  • Ding, Xumin; Monticone, Francesco; Zhang, Kuang
  • Advanced Materials, Vol. 27, Issue 7
  • DOI: 10.1002/adma.201405047

Meta-Lens Doublet in the Visible Region
journal, July 2017


Ultra-thin, planar, Babinet-inverted plasmonic metalenses
journal, April 2013

  • Ni, Xingjie; Ishii, Satoshi; Kildishev, Alexander V.
  • Light: Science & Applications, Vol. 2, Issue 4
  • DOI: 10.1038/lsa.2013.28

Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction
journal, September 2011


Multiwavelength achromatic metasurfaces by dispersive phase compensation
journal, February 2015


Hybrid bilayer plasmonic metasurface efficiently manipulates visible light
journal, January 2016


Spin-to-orbital angular momentum conversion in dielectric metasurfaces
journal, January 2017

  • Devlin, Robert Charles; Ambrosio, Antonio; Wintz, Daniel
  • Optics Express, Vol. 25, Issue 1
  • DOI: 10.1364/OE.25.000377

A broadband achromatic metalens for focusing and imaging in the visible
journal, January 2018


Planar Photonics with Metasurfaces
journal, March 2013

  • Kildishev, A. V.; Boltasseva, A.; Shalaev, V. M.
  • Science, Vol. 339, Issue 6125, p. 1232009-1232009
  • DOI: 10.1126/science.1232009

Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion
journal, February 2017


Disorder-induced optical transition from spin Hall to random Rashba effect
journal, December 2017


Catenary optics for achromatic generation of perfect optical angular momentum
journal, October 2015


Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves
journal, April 2012

  • Sun, Shulin; He, Qiong; Xiao, Shiyi
  • Nature Materials, Vol. 11, Issue 5
  • DOI: 10.1038/nmat3292

Low-Contrast Dielectric Metasurface Optics
journal, January 2016


Broadband All-Dielectric Magnifying Lens for Far-Field High-Resolution Imaging
journal, September 2013

  • Jiang, Wei Xiang; Qiu, Cheng-Wei; Han, Tian Cheng
  • Advanced Materials, Vol. 25, Issue 48
  • DOI: 10.1002/adma.201303657

Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces
journal, January 2012

  • Aieta, Francesco; Genevet, Patrice; Kats, Mikhail A.
  • Nano Letters, Vol. 12, Issue 9, p. 4932-4936
  • DOI: 10.1021/nl302516v

From metamaterials to metadevices
journal, October 2012

  • Zheludev, Nikolay I.; Kivshar, Yuri S.
  • Nature Materials, Vol. 11, Issue 11
  • DOI: 10.1038/nmat3431

All-dielectric optical nanoantennas
journal, January 2012

  • Krasnok, Alexander E.; Miroshnichenko, Andrey E.; Belov, Pavel A.
  • Optics Express, Vol. 20, Issue 18
  • DOI: 10.1364/OE.20.020599

Flat optics with designer metasurfaces
journal, February 2014

  • Yu, Nanfang; Capasso, Federico
  • Nature Materials, Vol. 13, Issue 2, p. 139-150
  • DOI: 10.1038/nmat3839

Composite functional metasurfaces for multispectral achromatic optics
journal, April 2017

  • Avayu, Ori; Almeida, Euclides; Prior, Yehiam
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14992

Dielectric gradient metasurface optical elements
journal, July 2014


Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers
journal, January 2015

  • Arbabi, Amir; Briggs, Ryan M.; Horie, Yu
  • Optics Express, Vol. 23, Issue 26
  • DOI: 10.1364/OE.23.033310

Polarization-Insensitive Metalenses at Visible Wavelengths
journal, October 2016


Aluminum Plasmonic Multicolor Meta-Hologram
journal, April 2015


Dispersionless Phase Discontinuities for Controlling Light Propagation
journal, October 2012

  • Huang, Lingling; Chen, Xianzhong; Mühlenbernd, Holger
  • Nano Letters, Vol. 12, Issue 11
  • DOI: 10.1021/nl303031j

Composite dielectric metasurfaces for phase control of vector field
journal, January 2015

  • Kim, Sung W.; Yee, Ki Ju; Abashin, Maxim
  • Optics Letters, Vol. 40, Issue 11
  • DOI: 10.1364/OL.40.002453

Extreme-angle broadband metamaterial lens
journal, December 2009

  • Kundtz, Nathan; Smith, David R.
  • Nature Materials, Vol. 9, Issue 2
  • DOI: 10.1038/nmat2610

Metasurface holograms for visible light
journal, November 2013

  • Ni, Xingjie; Kildishev, Alexander V.; Shalaev, Vladimir M.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3807

Multispectral optical metasurfaces enabled by achromatic phase transition
journal, October 2015

  • Zhao, Zeyu; Pu, Mingbo; Gao, Hui
  • Scientific Reports, Vol. 5, Article No. 15781
  • DOI: 10.1038/srep15781

Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging
journal, June 2016

  • Khorasaninejad, Mohammadreza; Chen, Wei Ting; Devlin, Robert C.
  • Science, Vol. 352, Issue 6290
  • DOI: 10.1126/science.aaf6644

Array of planar plasmonic scatterers functioning as light concentrator
journal, January 2011


Metamaterial Huygens’ Surfaces: Tailoring Wave Fronts with Reflectionless Sheets
journal, May 2013


Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings
journal, January 1998

  • Lalanne, Philippe; Astilean, Simion; Chavel, Pierre
  • Optics Letters, Vol. 23, Issue 14
  • DOI: 10.1364/OL.23.001081

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.