skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface

Abstract

Optical devices are highly attractive for biosensing as they can not only enable quantitative measurements of analytes but also provide information on molecular structures. Unfortunately, typical refractive index-based optical sensors do not have sufficient sensitivity to probe the binding of low-molecular-weight analytes. Non-optical devices such as field-effect transistors can be more sensitive but do not offer some of the significant features of optical devices, particularly molecular fingerprinting. We present optical conductivity-based mid-infrared (mid-IR) biosensors that allow for sensitive and quantitative measurements of low-molecular-weight analytes as well as the enhancement of spectral fingerprints. The sensors employ a hybrid metasurface consisting of monolayer graphene and metallic nano-antennas and combine individual advantages of plasmonic, electronic and spectroscopic approaches. First, the hybrid metasurface sensors can optically detect target molecule-induced carrier doping to graphene, allowing highly sensitive detection of low-molecular-weight analytes despite their small sizes. Second, the resonance shifts caused by changes in graphene optical conductivity is a well-defined function of graphene carrier density, thereby allowing for quantification of the binding of molecules. Third, the sensor performance is highly stable and consistent thanks to its insensitivity to graphene carrier mobility degradation. Lastly, the sensors can also act as substrates for surface-enhanced infrared spectroscopy. We demonstratedmore » the measurement of monolayers of sub-nanometer-sized molecules or particles and affinity binding-based quantitative detection of glucose down to 200 pM (36 pg/mL). We also demonstrated enhanced fingerprinting of minute quantities of glucose and polymer molecules.« less

Authors:
; ; ; ; ; ; ORCiD logo; ; ; ; ;
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1619559
Alternate Identifier(s):
OSTI ID: 1487246
Report Number(s):
BNL-209744-2018-JAAM
Journal ID: ISSN 2047-7538; 67; PII: 66
Grant/Contract Number:  
SC0012704
Resource Type:
Published Article
Journal Name:
Light, Science & Applications
Additional Journal Information:
Journal Name: Light, Science & Applications Journal Volume: 7 Journal Issue: 1; Journal ID: ISSN 2047-7538
Publisher:
Nature Publishing Group
Country of Publication:
United Kingdom
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; optics; metamaterials; nanofabrication

Citation Formats

Zhu, Yibo, Li, Zhaoyi, Hao, Zhuang, DiMarco, Christopher, Maturavongsadit, Panita, Hao, Yufeng, Lu, Ming, Stein, Aaron, Wang, Qian, Hone, James, Yu, Nanfang, and Lin, Qiao. Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface. United Kingdom: N. p., 2018. Web. doi:10.1038/s41377-018-0066-1.
Zhu, Yibo, Li, Zhaoyi, Hao, Zhuang, DiMarco, Christopher, Maturavongsadit, Panita, Hao, Yufeng, Lu, Ming, Stein, Aaron, Wang, Qian, Hone, James, Yu, Nanfang, & Lin, Qiao. Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface. United Kingdom. doi:10.1038/s41377-018-0066-1.
Zhu, Yibo, Li, Zhaoyi, Hao, Zhuang, DiMarco, Christopher, Maturavongsadit, Panita, Hao, Yufeng, Lu, Ming, Stein, Aaron, Wang, Qian, Hone, James, Yu, Nanfang, and Lin, Qiao. Wed . "Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface". United Kingdom. doi:10.1038/s41377-018-0066-1.
@article{osti_1619559,
title = {Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface},
author = {Zhu, Yibo and Li, Zhaoyi and Hao, Zhuang and DiMarco, Christopher and Maturavongsadit, Panita and Hao, Yufeng and Lu, Ming and Stein, Aaron and Wang, Qian and Hone, James and Yu, Nanfang and Lin, Qiao},
abstractNote = {Optical devices are highly attractive for biosensing as they can not only enable quantitative measurements of analytes but also provide information on molecular structures. Unfortunately, typical refractive index-based optical sensors do not have sufficient sensitivity to probe the binding of low-molecular-weight analytes. Non-optical devices such as field-effect transistors can be more sensitive but do not offer some of the significant features of optical devices, particularly molecular fingerprinting. We present optical conductivity-based mid-infrared (mid-IR) biosensors that allow for sensitive and quantitative measurements of low-molecular-weight analytes as well as the enhancement of spectral fingerprints. The sensors employ a hybrid metasurface consisting of monolayer graphene and metallic nano-antennas and combine individual advantages of plasmonic, electronic and spectroscopic approaches. First, the hybrid metasurface sensors can optically detect target molecule-induced carrier doping to graphene, allowing highly sensitive detection of low-molecular-weight analytes despite their small sizes. Second, the resonance shifts caused by changes in graphene optical conductivity is a well-defined function of graphene carrier density, thereby allowing for quantification of the binding of molecules. Third, the sensor performance is highly stable and consistent thanks to its insensitivity to graphene carrier mobility degradation. Lastly, the sensors can also act as substrates for surface-enhanced infrared spectroscopy. We demonstrated the measurement of monolayers of sub-nanometer-sized molecules or particles and affinity binding-based quantitative detection of glucose down to 200 pM (36 pg/mL). We also demonstrated enhanced fingerprinting of minute quantities of glucose and polymer molecules.},
doi = {10.1038/s41377-018-0066-1},
journal = {Light, Science & Applications},
number = 1,
volume = 7,
place = {United Kingdom},
year = {2018},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1038/s41377-018-0066-1

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Architecture and optical properties of the hybrid metasurface. a Schematic of the graphene-metallic metasurface, with small molecules adsorbed on the suspended graphene. b Optical micrograph of one device, showing that the graphene monolayer is continuous and uniform over a large device area. c Scanning electron microscopy (SEM) imagemore » of graphene-coated nanorod antennas. Inset: SEM image of one antenna gap with suspended graphene. d Reflectance spectrum of a device showing a primary plasmonic resonance (ωr) at ~1500 cm−1, a resonance dip (ωrr) at 1000 cm−1 and a PMMA absorption peak (ωpmma) near 1700 cm−1« less

Save / Share:

Works referenced in this record:

Optical biosensors in drug discovery
journal, July 2002

  • Cooper, Matthew A.
  • Nature Reviews Drug Discovery, Vol. 1, Issue 7
  • DOI: 10.1038/nrd838

Specific detection of biomolecules in physiological solutions using graphene transistor biosensors
journal, December 2016

  • Gao, Ning; Gao, Teng; Yang, Xiao
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 51
  • DOI: 10.1073/pnas.1625010114

Selective sensing of saccharides using simple boronic acids and their aggregates
journal, January 2013

  • Wu, Xin; Li, Zhao; Chen, Xuan-Xuan
  • Chemical Society Reviews, Vol. 42, Issue 20
  • DOI: 10.1039/c3cs60148j

Dirac charge dynamics in graphene by infrared spectroscopy
journal, June 2008

  • Li, Z. Q.; Henriksen, E. A.; Jiang, Z.
  • Nature Physics, Vol. 4, Issue 7
  • DOI: 10.1038/nphys989

Damping pathways of mid-infrared plasmons in graphene nanostructures
journal, April 2013


Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis
journal, January 2016

  • Gao, Wei; Emaminejad, Sam; Nyein, Hnin Yin Yin
  • Nature, Vol. 529, Issue 7587
  • DOI: 10.1038/nature16521

Mid-infrared plasmonic biosensing with graphene
journal, July 2015


Handheld high-throughput plasmonic biosensor using computational on-chip imaging
journal, January 2014

  • Cetin, Arif E.; Coskun, Ahmet F.; Galarreta, Betty C.
  • Light: Science & Applications, Vol. 3, Issue 1
  • DOI: 10.1038/lsa.2014.3

Surface-Enhanced Raman Spectroscopy Biosensing: In Vivo Diagnostics and Multimodal Imaging
journal, June 2016


A graphene-based affinity nanosensor for detection of low-charge and low-molecular-weight molecules
journal, January 2016

  • Zhu, Yibo; Hao, Yufeng; Adogla, Enoch A.
  • Nanoscale, Vol. 8, Issue 11
  • DOI: 10.1039/C5NR08866F

Electrical Switching of Infrared Light Using Graphene Integration with Plasmonic Fano Resonant Metasurfaces
journal, January 2015

  • Dabidian, Nima; Kholmanov, Iskandar; Khanikaev, Alexander B.
  • ACS Photonics, Vol. 2, Issue 2
  • DOI: 10.1021/ph5003279

Surface-Enhanced Infrared Spectroscopy Using Nanometer-Sized Gaps
journal, April 2014

  • Huck, Christian; Neubrech, Frank; Vogt, Jochen
  • ACS Nano, Vol. 8, Issue 5
  • DOI: 10.1021/nn500903v

Metamaterials-Based Label-Free Nanosensor for Conformation and Affinity Biosensing
journal, August 2013

  • Cao, Cuong; Zhang, Jun; Wen, Xinglin
  • ACS Nano, Vol. 7, Issue 9
  • DOI: 10.1021/nn401645t

A graphene-based broadband optical modulator
journal, May 2011

  • Liu, Ming; Yin, Xiaobo; Ulin-Avila, Erick
  • Nature, Vol. 474, Issue 7349
  • DOI: 10.1038/nature10067

Reusable, Robust, and Accurate Laser-Generated Photonic Nanosensor
journal, May 2014

  • Yetisen, Ali K.; Montelongo, Yunuen; da Cruz Vasconcellos, Fernando
  • Nano Letters, Vol. 14, Issue 6
  • DOI: 10.1021/nl5012504

A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy
journal, March 2016

  • Lee, Hyunjae; Choi, Tae Kyu; Lee, Young Bum
  • Nature Nanotechnology, Vol. 11, Issue 6
  • DOI: 10.1038/nnano.2016.38

Biosensing with plasmonic nanosensors
journal, June 2008

  • Anker, Jeffrey N.; Hall, W. Paige; Lyandres, Olga
  • Nature Materials, Vol. 7, Issue 6
  • DOI: 10.1038/nmat2162

MoS 2 Field-Effect Transistor for Next-Generation Label-Free Biosensors
journal, March 2014

  • Sarkar, Deblina; Liu, Wei; Xie, Xuejun
  • ACS Nano, Vol. 8, Issue 4
  • DOI: 10.1021/nn5009148

Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection
journal, February 2017

  • Etezadi, Dordaneh; Warner IV, John B.; Ruggeri, Francesco S.
  • Light: Science & Applications, Vol. 6, Issue 8
  • DOI: 10.1038/lsa.2017.29

Potentiometric Saccharide Detection Based on the p K a Changes of Poly(aniline boronic acid)
journal, October 2002

  • Shoji, Eiichi; Freund, Michael S.
  • Journal of the American Chemical Society, Vol. 124, Issue 42
  • DOI: 10.1021/ja0267371

A review of fiber-optic biosensors
journal, August 2007

  • Leung, Angela; Shankar, P. Mohana; Mutharasan, Raj
  • Sensors and Actuators B: Chemical, Vol. 125, Issue 2
  • DOI: 10.1016/j.snb.2007.03.010

Plasmonic nanorod metamaterials for biosensing
journal, October 2009

  • Kabashin, A. V.; Evans, P.; Pastkovsky, S.
  • Nature Materials, Vol. 8, Issue 11
  • DOI: 10.1038/nmat2546

Plasmonics for future biosensors
journal, November 2012


Glucose selective Surface Plasmon Resonance-based bis-boronic acid sensor
journal, January 2013

  • Stephenson-Brown, Alex; Wang, Hui-Chen; Iqbal, Parvez
  • The Analyst, Vol. 138, Issue 23
  • DOI: 10.1039/c3an01233f

Infrared Plasmonic Biosensor for Real-Time and Label-Free Monitoring of Lipid Membranes
journal, January 2016


Optical freezing of charge motion in an organic conductor
journal, November 2014

  • Ishikawa, Takahiro; Sagae, Yuto; Naitoh, Yota
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6528

Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons
journal, July 2016

  • Hu, Hai; Yang, Xiaoxia; Zhai, Feng
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12334

Ultrasensitive Plasmonic Detection of Molecules with Graphene
journal, March 2016


Gate-Variable Optical Transitions in Graphene
journal, March 2008


Graphene electro-optic modulator with 30 GHz bandwidth
journal, July 2015

  • Phare, Christopher T.; Daniel Lee, Yoon-Ho; Cardenas, Jaime
  • Nature Photonics, Vol. 9, Issue 8
  • DOI: 10.1038/nphoton.2015.122

Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers
journal, November 2011

  • Wu, Chihhui; Khanikaev, Alexander B.; Adato, Ronen
  • Nature Materials, Vol. 11, Issue 1, p. 69-75
  • DOI: 10.1038/nmat3161

Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors
journal, May 2012

  • Duan, Xuexin; Li, Yue; Rajan, Nitin K.
  • Nature Nanotechnology, Vol. 7, Issue 6
  • DOI: 10.1038/nnano.2012.82

Surface-enhanced Raman spectroscopy for in vivo biosensing
journal, August 2017

  • Laing, Stacey; Jamieson, Lauren E.; Faulds, Karen
  • Nature Reviews Chemistry, Vol. 1, Issue 8
  • DOI: 10.1038/s41570-017-0060

One-Dimensional Electrical Contact to a Two-Dimensional Material
journal, October 2013


Graphene Plasmon Enhanced Vibrational Sensing of Surface-Adsorbed Layers
journal, February 2014

  • Li, Yilei; Yan, Hugen; Farmer, Damon B.
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404824w

Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators
journal, October 2014

  • Yao, Yu; Shankar, Raji; Kats, Mikhail A.
  • Nano Letters, Vol. 14, Issue 11
  • DOI: 10.1021/nl503104n

Graphene Transistors Are Insensitive to pH Changes in Solution
journal, September 2011

  • Fu, Wangyang; Nef, Cornelia; Knopfmacher, Oren
  • Nano Letters, Vol. 11, Issue 9
  • DOI: 10.1021/nl201332c

Detection of individual gas molecules adsorbed on graphene
journal, July 2007

  • Schedin, F.; Geim, A. K.; Morozov, S. V.
  • Nature Materials, Vol. 6, Issue 9, p. 652-655
  • DOI: 10.1038/nmat1967

Revealing the quantum regime in tunnelling plasmonics
journal, November 2012

  • Savage, Kevin J.; Hawkeye, Matthew M.; Esteban, Rubén
  • Nature, Vol. 491, Issue 7425
  • DOI: 10.1038/nature11653

Optoelectromechanical Multimodal Biosensor with Graphene Active Region
journal, September 2014

  • Zhu, Alexander Y.; Yi, Fei; Reed, Jason C.
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl502279c

In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes
journal, November 2013

  • Iverson, Nicole M.; Barone, Paul W.; Shandell, Mia
  • Nature Nanotechnology, Vol. 8, Issue 11
  • DOI: 10.1038/nnano.2013.222

Electrical Detection of DNA Hybridization with Single-Base Specificity Using Transistors Based on CVD-Grown Graphene Sheets
journal, January 2010

  • Dong, Xiaochen; Shi, Yumeng; Huang, Wei
  • Advanced Materials, Vol. 22, Issue 14, p. 1649-1653
  • DOI: 10.1002/adma.200903645

Analytical Modeling of Graphene Plasmons
journal, August 2017


Ultrasensitive photodetectors based on monolayer MoS2
journal, June 2013

  • Lopez-Sanchez, Oriol; Lembke, Dominik; Kayci, Metin
  • Nature Nanotechnology, Vol. 8, Issue 7
  • DOI: 10.1038/nnano.2013.100

Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas
journal, February 2013

  • Yao, Yu; Kats, Mikhail A.; Genevet, Patrice
  • Nano Letters, Vol. 13, Issue 3
  • DOI: 10.1021/nl3047943

Affinity based glucose measurement using fiber optic surface plasmon resonance sensor with surface modification by borate polymer
journal, July 2015


Theoretical investigation of Vernier effect based sensors with hybrid porous silicon-polymer optical waveguides
journal, April 2017

  • Azuelos, Paul; Girault, Pauline; Lorrain, Nathalie
  • Journal of Applied Physics, Vol. 121, Issue 14
  • DOI: 10.1063/1.4980010

Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor
journal, March 2017

  • Xu, Shicai; Zhan, Jian; Man, Baoyuan
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14902

Functionalized Hydrogel on Plasmonic Nanoantennas for Noninvasive Glucose Sensing
journal, March 2015


High-κ Solid-Gate Transistor Configured Graphene Biosensor with Fully Integrated Structure and Enhanced Sensitivity
journal, September 2016

  • Wang, Cheng; Li, Yijun; Zhu, Yibo
  • Advanced Functional Materials, Vol. 26, Issue 42
  • DOI: 10.1002/adfm.201602960

A graphene field-effect transistor as a molecule-specific probe of DNA nucleobases
journal, March 2015

  • Dontschuk, Nikolai; Stacey, Alastair; Tadich, Anton
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7563

Capacitive Sensing of Glucose in Electrolytes Using Graphene Quantum Capacitance Varactors
journal, October 2017

  • Zhang, Yao; Ma, Rui; Zhen, Xue V.
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 44
  • DOI: 10.1021/acsami.7b14864

    Works referencing / citing this record:

    Leveraging of MEMS Technologies for Optical Metamaterials Applications
    journal, July 2019


    Laser Fabrication of Graphene-Based Electronic Skin
    journal, June 2019


      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.