DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Å-Indentation for non-destructive elastic moduli measurements of supported ultra-hard ultra-thin films and nanostructures

Abstract

During conventional nanoindentation measurements, the indentation depths are usually larger than 1–10 nm, which hinders the ability to study ultra-thin films (<10 nm) and supported atomically thin two-dimensional (2D) materials. Here, we discuss the development of modulated Å-indentation to achieve sub-Å indentations depths during force-indentation measurements while also imaging materials with nanoscale resolution. Modulated nanoindentation (MoNI) was originally invented to measure the radial elasticity of multi-walled nanotubes. Now, by using extremely small amplitude oscillations (<<1 Å) at high frequency, and stiff cantilevers, we show how modulated nano/Å-indentation (MoNI/ÅI) enables non-destructive measurements of the contact stiffness and indentation modulus of ultra-thin ultra-stiff films, including CVD diamond films (~1000 GPa stiffness), as well as the transverse modulus of 2D materials. Our analysis demonstrates that in presence of a standard laboratory noise floor, the signal to noise ratio of MoNI/ÅI implemented with a commercial atomic force microscope (AFM) is such that a dynamic range of 80 dB –– achievable with commercial Lock-in amplifiers –– is sufficient to observe superior indentation curves, having indentation depths as small as 0.3 Å, resolution in indentation <0.05 Å, and in normal load <0.5 nN. Being implemented on a standard AFM, this method has the potential for amore » broad applicability.« less

Authors:
; ;
Publication Date:
Research Org.:
New York Univ. (NYU), NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1619543
Alternate Identifier(s):
OSTI ID: 1613027
Grant/Contract Number:  
SC0018924
Resource Type:
Published Article
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Name: Scientific Reports Journal Volume: 9 Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United Kingdom
Language:
English
Subject:
36 MATERIALS SCIENCE; Science & Technology - Other Topics

Citation Formats

Cellini, Filippo, Gao, Yang, and Riedo, Elisa. Å-Indentation for non-destructive elastic moduli measurements of supported ultra-hard ultra-thin films and nanostructures. United Kingdom: N. p., 2019. Web. doi:10.1038/s41598-019-40636-0.
Cellini, Filippo, Gao, Yang, & Riedo, Elisa. Å-Indentation for non-destructive elastic moduli measurements of supported ultra-hard ultra-thin films and nanostructures. United Kingdom. https://doi.org/10.1038/s41598-019-40636-0
Cellini, Filippo, Gao, Yang, and Riedo, Elisa. Mon . "Å-Indentation for non-destructive elastic moduli measurements of supported ultra-hard ultra-thin films and nanostructures". United Kingdom. https://doi.org/10.1038/s41598-019-40636-0.
@article{osti_1619543,
title = {Å-Indentation for non-destructive elastic moduli measurements of supported ultra-hard ultra-thin films and nanostructures},
author = {Cellini, Filippo and Gao, Yang and Riedo, Elisa},
abstractNote = {During conventional nanoindentation measurements, the indentation depths are usually larger than 1–10 nm, which hinders the ability to study ultra-thin films (<10 nm) and supported atomically thin two-dimensional (2D) materials. Here, we discuss the development of modulated Å-indentation to achieve sub-Å indentations depths during force-indentation measurements while also imaging materials with nanoscale resolution. Modulated nanoindentation (MoNI) was originally invented to measure the radial elasticity of multi-walled nanotubes. Now, by using extremely small amplitude oscillations (<<1 Å) at high frequency, and stiff cantilevers, we show how modulated nano/Å-indentation (MoNI/ÅI) enables non-destructive measurements of the contact stiffness and indentation modulus of ultra-thin ultra-stiff films, including CVD diamond films (~1000 GPa stiffness), as well as the transverse modulus of 2D materials. Our analysis demonstrates that in presence of a standard laboratory noise floor, the signal to noise ratio of MoNI/ÅI implemented with a commercial atomic force microscope (AFM) is such that a dynamic range of 80 dB –– achievable with commercial Lock-in amplifiers –– is sufficient to observe superior indentation curves, having indentation depths as small as 0.3 Å, resolution in indentation <0.05 Å, and in normal load <0.5 nN. Being implemented on a standard AFM, this method has the potential for a broad applicability.},
doi = {10.1038/s41598-019-40636-0},
journal = {Scientific Reports},
number = 1,
volume = 9,
place = {United Kingdom},
year = {Mon Mar 11 00:00:00 EDT 2019},
month = {Mon Mar 11 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1038/s41598-019-40636-0

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics
journal, June 2010


Elastic coupling between layers in two-dimensional materials
journal, June 2015

  • Gao, Yang; Kim, Suenne; Zhou, Si
  • Nature Materials, Vol. 14, Issue 7
  • DOI: 10.1038/nmat4322

Nanoindentation Studies Reveal Material Properties of Viruses
journal, March 2009


Fast, High Resolution, and Wide Modulus Range Nanomechanical Mapping with Bimodal Tapping Mode
journal, October 2017


Water-Dependent Micromechanical and Rheological Properties of Silica Colloidal Crystals Studied by Nanoindentation
journal, January 2012

  • Gallego-Gómez, Francisco; Morales-Flórez, Víctor; Blanco, Álvaro
  • Nano Letters, Vol. 12, Issue 9
  • DOI: 10.1021/nl3024998

Using force modulation to image surface elasticities with the atomic force microscope
journal, April 1991


Adhesive elastic contacts: JKR and more
journal, July 2008


Method for the calibration of atomic force microscope cantilevers
journal, July 1995

  • Sader, John E.; Larson, Ian; Mulvaney, Paul
  • Review of Scientific Instruments, Vol. 66, Issue 7
  • DOI: 10.1063/1.1145439

A practical guide for analysis of nanoindentation data
journal, August 2009

  • Oyen, Michelle L.; Cook, Robert F.
  • Journal of the Mechanical Behavior of Biomedical Materials, Vol. 2, Issue 4
  • DOI: 10.1016/j.jmbbm.2008.10.002

Thermal Transport into Graphene through Nanoscopic Contacts
journal, November 2013


Elastic and plastic properties of thin films on substrates: nanoindentation techniques
journal, August 1997


Ultrahard carbon film from epitaxial two-layer graphene
journal, December 2017


Voltage-controlled quantum light from an atomically thin semiconductor
journal, May 2015

  • Chakraborty, Chitraleema; Kinnischtzke, Laura; Goodfellow, Kenneth M.
  • Nature Nanotechnology, Vol. 10, Issue 6
  • DOI: 10.1038/nnano.2015.79

Calibration of rectangular atomic force microscope cantilevers
journal, October 1999

  • Sader, John E.; Chon, James W. M.; Mulvaney, Paul
  • Review of Scientific Instruments, Vol. 70, Issue 10
  • DOI: 10.1063/1.1150021

Novel ultra nanoindentation method with extremely low thermal drift: Principle and experimental results
journal, March 2009

  • Nohava, J.; Randall, N. X.; Conté, N.
  • Journal of Materials Research, Vol. 24, Issue 3
  • DOI: 10.1557/jmr.2009.0114

Fast nanomechanical spectroscopy of soft matter
journal, January 2014

  • Herruzo, Elena T.; Perrino, Alma P.; Garcia, Ricardo
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4126

Uncertainty quantification in nanomechanical measurements using the atomic force microscope
journal, October 2011


Hertzian contact of anisotropic bodies
journal, May 1966


An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments
journal, June 1992

  • Oliver, W. C.; Pharr, G. M.
  • Journal of Materials Research, Vol. 7, Issue 06, p. 1564-1583
  • DOI: 10.1557/JMR.1992.1564

Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation
journal, October 1997


Atomically thin two-dimensional organic-inorganic hybrid perovskites
journal, September 2015


A comparison of JKR-based methods to analyze quasi-static and dynamic indentation force curves
journal, June 2006

  • Ebenstein, Donna M.; Wahl, Kathryn J.
  • Journal of Colloid and Interface Science, Vol. 298, Issue 2
  • DOI: 10.1016/j.jcis.2005.12.062

Continuous Stiffness Measurement During Instrumented Indentation Testing
journal, January 2010


Stochastic noise in atomic force microscopy
journal, September 2012


Development of a precision nanoindentation platform
journal, July 2013

  • Nowakowski, B. K.; Smith, D. T.; Smith, S. T.
  • Review of Scientific Instruments, Vol. 84, Issue 7
  • DOI: 10.1063/1.4811195

Dynamic nanoindentation by instrumented nanoindentation and force microscopy: a comparative review
journal, January 2013

  • Cohen, Sidney R.; Kalfon-Cohen, Estelle
  • Beilstein Journal of Nanotechnology, Vol. 4
  • DOI: 10.3762/bjnano.4.93

Viscoelastic Property Mapping with Contact Resonance Force Microscopy
journal, December 2011

  • Killgore, J. P.; Yablon, D. G.; Tsou, A. H.
  • Langmuir, Vol. 27, Issue 23
  • DOI: 10.1021/la203434w

A review of nanoindentation continuous stiffness measurement technique and its applications
journal, February 2002


Determination of mechanical properties by nanoindentation independently of indentation depth measurement
journal, August 2012

  • Guillonneau, Gaylord; Kermouche, Guillaume; Bec, Sandrine
  • Journal of Materials Research, Vol. 27, Issue 19
  • DOI: 10.1557/jmr.2012.261

Force measurements with the atomic force microscope: Technique, interpretation and applications
journal, October 2005


Epitaxial two-layer graphene under pressure: Diamene stiffer than Diamond
journal, July 2018


A simple predictive model for spherical indentation
journal, February 1993


Elastic Property of Vertically Aligned Nanowires
journal, October 2005

  • Song, Jinhui; Wang, Xudong; Riedo, Elisa
  • Nano Letters, Vol. 5, Issue 10
  • DOI: 10.1021/nl051334v

Nanoindentation of polymers: an overview
journal, March 2001


Mechanical properties of atomically thin boron nitride and the role of interlayer interactions
journal, June 2017

  • Falin, Aleksey; Cai, Qiran; Santos, Elton J. G.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15815

Extraction of Mechanical Properties with Second Harmonic Detection for Dynamic Nanoindentation Testing
journal, October 2011


Plate geometries for contact resonance atomic force microscopy: Modeling, optimization, and verification
journal, July 2018

  • Aureli, Matteo; Ahsan, Syed N.; Shihab, Rafiul H.
  • Journal of Applied Physics, Vol. 124, Issue 1
  • DOI: 10.1063/1.5038727

Atomic force acoustic microscopy methods to determine thin-film elastic properties
journal, August 2003

  • Hurley, D. C.; Shen, K.; Jennett, N. M.
  • Journal of Applied Physics, Vol. 94, Issue 4
  • DOI: 10.1063/1.1592632

Comparative study of lithium fluoride and graphite by atomic force microscopy (AFM)
journal, October 1988


Atomically thin p–n junctions with van der Waals heterointerfaces
journal, August 2014

  • Lee, Chul-Ho; Lee, Gwan-Hyoung; van der Zande, Arend M.
  • Nature Nanotechnology, Vol. 9, Issue 9
  • DOI: 10.1038/nnano.2014.150

A General Equation for Fitting Contact Area and Friction vs Load Measurements
journal, March 1999

  • Carpick, Robert W.; Ogletree, D. Frank; Salmeron, Miquel
  • Journal of Colloid and Interface Science, Vol. 211, Issue 2
  • DOI: 10.1006/jcis.1998.6027

Q-carbon harder than diamond
journal, March 2018

  • Narayan, Jagdish; Gupta, Siddharth; Bhaumik, Anagh
  • MRS Communications, Vol. 8, Issue 02
  • DOI: 10.1557/mrc.2018.35

Quantitative subsurface contact resonance force microscopy of model polymer nanocomposites
journal, March 2011