DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries

Abstract

Lithium batteries with Si, Al or Bi microsized (>10 µm) particle anodes promise high capacity, ease of production, low cost and lesser environmental impact, yet they suffer from fast degradation and low Coulombic efficiency (CE). Here we demonstrate that a rationally designed electrolyte (2 M LiPF6 in 1:1 v/v mixture of tetrahydrofuran and 2-methyl tetrahydrofuran) enables 100 cycles of full cells containing microsized Si, Al and Bi anodes with commercial LiFePO4 and LiNi0.8Co0.15Al0.05O2 cathodes. Alloy anodes with areal capacities of more than 2.5 mAh cm-2 achieved >300 cycles with high initial CE of >90% and average CE of >99.9%.These improvements are facilitated by the formation of a high modulus LiF|organic bilayer interphase possessing high interfacial energy with the alloy anode to accommodate plastic deformation of the lithiated alloy during cycling. This work provides a simple yet practical solution to current battery technology without any binder modification or special fabrication methods.

Authors:
ORCiD logo [1];  [1];  [1];  [2]; ORCiD logo [2]; ORCiD logo [3];  [4];  [1]; ORCiD logo [1]; ORCiD logo [1];  [2]; ORCiD logo [3];  [2];  [4]; ORCiD logo [5]; ORCiD logo [1]
  1. Univ. of Maryland, College Park, MD (United States)
  2. Rutgers Univ., New Brunswick, NJ (United States); The State Univ. of New Jersey, New Brunswick, NJ (United States)
  3. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  4. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
  5. US Army Combat Capabilities Development Command Army Research Laboratory, Adelphi, MA (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1619250
Alternate Identifier(s):
OSTI ID: 1633614
Report Number(s):
BNL-215931-2020-JAAM; PNNL-SA-151702
Journal ID: ISSN 2058-7546
Grant/Contract Number:  
SC0012704; EE0008202; AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Nature Energy
Additional Journal Information:
Journal Volume: 5; Journal Issue: 5; Journal ID: ISSN 2058-7546
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE

Citation Formats

Chen, Ji, Fan, Xiulin, Li, Qin, Yang, Hongbin, Khoshi, M. Reza, Xu, Yaobin, Hwang, Sooyeon, Chen, Long, Ji, Xiao, Yang, Chongyin, He, Huixin, Wang, Chongmin, Garfunkel, Eric, Su, Dong, Borodin, Oleg, and Wang, Chunsheng. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. United States: N. p., 2020. Web. doi:10.1038/s41560-020-0601-1.
Chen, Ji, Fan, Xiulin, Li, Qin, Yang, Hongbin, Khoshi, M. Reza, Xu, Yaobin, Hwang, Sooyeon, Chen, Long, Ji, Xiao, Yang, Chongyin, He, Huixin, Wang, Chongmin, Garfunkel, Eric, Su, Dong, Borodin, Oleg, & Wang, Chunsheng. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. United States. https://doi.org/10.1038/s41560-020-0601-1
Chen, Ji, Fan, Xiulin, Li, Qin, Yang, Hongbin, Khoshi, M. Reza, Xu, Yaobin, Hwang, Sooyeon, Chen, Long, Ji, Xiao, Yang, Chongyin, He, Huixin, Wang, Chongmin, Garfunkel, Eric, Su, Dong, Borodin, Oleg, and Wang, Chunsheng. Mon . "Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries". United States. https://doi.org/10.1038/s41560-020-0601-1. https://www.osti.gov/servlets/purl/1619250.
@article{osti_1619250,
title = {Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries},
author = {Chen, Ji and Fan, Xiulin and Li, Qin and Yang, Hongbin and Khoshi, M. Reza and Xu, Yaobin and Hwang, Sooyeon and Chen, Long and Ji, Xiao and Yang, Chongyin and He, Huixin and Wang, Chongmin and Garfunkel, Eric and Su, Dong and Borodin, Oleg and Wang, Chunsheng},
abstractNote = {Lithium batteries with Si, Al or Bi microsized (>10 µm) particle anodes promise high capacity, ease of production, low cost and lesser environmental impact, yet they suffer from fast degradation and low Coulombic efficiency (CE). Here we demonstrate that a rationally designed electrolyte (2 M LiPF6 in 1:1 v/v mixture of tetrahydrofuran and 2-methyl tetrahydrofuran) enables 100 cycles of full cells containing microsized Si, Al and Bi anodes with commercial LiFePO4 and LiNi0.8Co0.15Al0.05O2 cathodes. Alloy anodes with areal capacities of more than 2.5 mAh cm-2 achieved >300 cycles with high initial CE of >90% and average CE of >99.9%.These improvements are facilitated by the formation of a high modulus LiF|organic bilayer interphase possessing high interfacial energy with the alloy anode to accommodate plastic deformation of the lithiated alloy during cycling. This work provides a simple yet practical solution to current battery technology without any binder modification or special fabrication methods.},
doi = {10.1038/s41560-020-0601-1},
journal = {Nature Energy},
number = 5,
volume = 5,
place = {United States},
year = {Mon Apr 20 00:00:00 EDT 2020},
month = {Mon Apr 20 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 131 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si
journal, January 2007

  • Li, Jing; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 154, Issue 3
  • DOI: 10.1149/1.2409862

Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells
journal, January 2007


Design of Amorphous Alloy Electrodes for Li-Ion Batteries
journal, January 2004

  • Chen, Zonghai; Chevrier, Vincent; Christensen, L.
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 10
  • DOI: 10.1149/1.1792262

Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive
journal, January 2005


Reversible Cycling of Crystalline Silicon Powder
journal, January 2007

  • Obrovac, M. N.; Krause, L. J.
  • Journal of The Electrochemical Society, Vol. 154, Issue 2
  • DOI: 10.1149/1.2402112

A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries
journal, March 2010

  • Kim, Hyejung; Seo, Minho; Park, Mi-Hee
  • Angewandte Chemie International Edition, Vol. 49, Issue 12
  • DOI: 10.1002/anie.200906287

Anisotropic Swelling and Fracture of Silicon Nanowires during Lithiation
journal, August 2011

  • Liu, Xiao Hua; Zheng, He; Zhong, Li
  • Nano Letters, Vol. 11, Issue 8, p. 3312-3318
  • DOI: 10.1021/nl201684d

Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes
journal, January 2009

  • Cui, Li-Feng; Ruffo, Riccardo; Chan, Candace K.
  • Nano Letters, Vol. 9, Issue 1, p. 491-495
  • DOI: 10.1021/nl8036323

High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity
journal, August 2015

  • Li, Sa; Niu, Junjie; Zhao, Yu Cheng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8872

Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life
journal, July 2011

  • Yao, Yan; McDowell, Matthew T.; Ryu, Ill
  • Nano Letters, Vol. 11, Issue 7, p. 2949-2954
  • DOI: 10.1021/nl201470j

Silicon Nanotube Battery Anodes
journal, November 2009

  • Park, Mi-Hee; Kim, Min Gyu; Joo, Jaebum
  • Nano Letters, Vol. 9, Issue 11, p. 3844-3847
  • DOI: 10.1021/nl902058c

Nonfilling Carbon Coating of Porous Silicon Micrometer-Sized Particles for High-Performance Lithium Battery Anodes
journal, February 2015

  • Lu, Zhenda; Liu, Nian; Lee, Hyun-Wook
  • ACS Nano, Vol. 9, Issue 3
  • DOI: 10.1021/nn505410q

High-performance lithium-ion anodes using a hierarchical bottom-up approach
journal, March 2010

  • Magasinski, A.; Dixon, P.; Hertzberg, B.
  • Nature Materials, Vol. 9, Issue 4, p. 353-358
  • DOI: 10.1038/nmat2725

Atomic-level characterization of transport cycle thermodynamics in the glycerol-3-phosphate:phosphate antiporter
journal, September 2015

  • Moradi, Mahmoud; Enkavi, Giray; Tajkhorshid, Emad
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9393

High capacity silicon anodes enabled by MXene viscous aqueous ink
journal, February 2019

  • Zhang, Chuanfang; Park, Sang-Hoon; Seral‐Ascaso, Andrés
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-08383-y

Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries
journal, November 2013

  • Wang, Chao; Wu, Hui; Chen, Zheng
  • Nature Chemistry, Vol. 5, Issue 12
  • DOI: 10.1038/nchem.1802

Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries
journal, July 2017


Silicon Microparticle Anodes with Self-Healing Multiple Network Binder
journal, May 2018


A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries
journal, September 2011


Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes
journal, January 2016


Review—SEI: Past, Present and Future
journal, January 2017

  • Peled, E.; Menkin, S.
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1441707jes

Direct Visualization of the Solid Electrolyte Interphase and Its Effects on Silicon Electrochemical Performance
journal, August 2016

  • Sina, Mahsa; Alvarado, Judith; Shobukawa, Hitoshi
  • Advanced Materials Interfaces, Vol. 3, Issue 20
  • DOI: 10.1002/admi.201600438

Solid Electrolyte Interphase Growth and Capacity Loss in Silicon Electrodes
journal, June 2016

  • Michan, Alison L.; Divitini, Giorgio; Pell, Andrew J.
  • Journal of the American Chemical Society, Vol. 138, Issue 25
  • DOI: 10.1021/jacs.6b02882

Understanding Fluoroethylene Carbonate and Vinylene Carbonate Based Electrolytes for Si Anodes in Lithium Ion Batteries with NMR Spectroscopy
journal, July 2018

  • Jin, Yanting; Kneusels, Nis-Julian H.; Marbella, Lauren E.
  • Journal of the American Chemical Society, Vol. 140, Issue 31
  • DOI: 10.1021/jacs.8b03408

The Mechanism of SEI Formation on a Single Crystal Si(100) Electrode
journal, January 2015

  • Vogl, Ulrike S.; Lux, Simon F.; Crumlin, Ethan J.
  • Journal of The Electrochemical Society, Vol. 162, Issue 4
  • DOI: 10.1149/2.0391504jes

"Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries
journal, November 2015


Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by “Water-in-Bisalt” Electrolyte
journal, April 2016

  • Suo, Liumin; Borodin, Oleg; Sun, Wei
  • Angewandte Chemie International Edition, Vol. 55, Issue 25
  • DOI: 10.1002/anie.201602397

Dielectric Constants for Quantum Chemistry and Li-Ion Batteries: Solvent Blends of Ethylene Carbonate and Ethyl Methyl Carbonate
journal, September 2015

  • Hall, David S.; Self, Julian; Dahn, J. R.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 39
  • DOI: 10.1021/acs.jpcc.5b06022

Stable cycling of high-voltage lithium metal batteries in ether electrolytes
journal, July 2018


High-Concentration Ether Electrolytes for Stable High-Voltage Lithium Metal Batteries
journal, March 2019


Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes
journal, April 2009


Lithium Salt Effects on Silicon Electrode Performance and Solid Electrolyte Interphase (SEI) Structure, Role of Solution Structure on SEI Formation
journal, January 2017

  • Yoon, Taeho; Chapman, Navid; Seo, Daniel M.
  • Journal of The Electrochemical Society, Vol. 164, Issue 9
  • DOI: 10.1149/2.1421709jes

Enabling high performance lithium storage in aluminum: The double edged surface oxide
journal, November 2017


Comparison of Cycling Performance of Lithium Ion Cell Anode Graphites
journal, January 2012

  • Ridgway, Paul; Zheng, Honghe; Bello, A. F.
  • Journal of The Electrochemical Society, Vol. 159, Issue 5
  • DOI: 10.1149/2.006205jes

High damage tolerance of electrochemically lithiated silicon
journal, September 2015

  • Wang, Xueju; Fan, Feifei; Wang, Jiangwei
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9417

Nanoscale Chemical Evolution of Silicon Negative Electrodes Characterized by Low-Loss STEM-EELS
journal, November 2016


Valence electron energy-loss spectroscopy of silicon negative electrodes for lithium batteries
journal, January 2010

  • Danet, Julien; Brousse, Thierry; Rasim, Karsten
  • Phys. Chem. Chem. Phys., Vol. 12, Issue 1
  • DOI: 10.1039/B915245H

Li + Transport and Mechanical Properties of Model Solid Electrolyte Interphases (SEI): Insight from Atomistic Molecular Dynamics Simulations
journal, July 2017

  • Bedrov, Dmitry; Borodin, Oleg; Hooper, Justin B.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 30
  • DOI: 10.1021/acs.jpcc.7b04247

Cryogenic Electron Microscopy for Characterizing and Diagnosing Batteries
journal, November 2018


Inhomogeneous Electron Gas
journal, November 1964


Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Projector augmented-wave method
journal, December 1994


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Li Segregation Induces Structure and Strength Changes at the Amorphous Si/Cu Interface
journal, September 2013

  • Stournara, Maria E.; Xiao, Xingcheng; Qi, Yue
  • Nano Letters, Vol. 13, Issue 10
  • DOI: 10.1021/nl402353k

Polarizable Force Field Development and Molecular Dynamics Simulations of Ionic Liquids
journal, August 2009

  • Borodin, Oleg
  • The Journal of Physical Chemistry B, Vol. 113, Issue 33
  • DOI: 10.1021/jp905220k

Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes
journal, January 2019

  • Alvarado, Judith; Schroeder, Marshall A.; Pollard, Travis P.
  • Energy & Environmental Science, Vol. 12, Issue 2
  • DOI: 10.1039/C8EE02601G

High-Efficiency Lithium-Metal Anode Enabled by Liquefied Gas Electrolytes
journal, August 2019


Insights into the Structure and Transport of the Lithium, Sodium, Magnesium, and Zinc Bis(trifluoromethansulfonyl)imide Salts in Ionic Liquids
journal, August 2018

  • Borodin, Oleg; Giffin, Guinevere A.; Moretti, Arianna
  • The Journal of Physical Chemistry C, Vol. 122, Issue 35
  • DOI: 10.1021/acs.jpcc.8b05573

Quantum Chemistry and Molecular Dynamics Simulation Study of Dimethyl Carbonate: Ethylene Carbonate Electrolytes Doped with LiPF 6
journal, February 2009

  • Borodin, Oleg; Smith, Grant D.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 6
  • DOI: 10.1021/jp809614h

Computer simulation and the dielectric constant of polarizable polar systems
journal, May 1984


Densities and Viscosities of the Binary Mixtures of Tetrahydrofuran with Isomeric Chlorobutanes at 298.15 K and 313.15 K
journal, July 2006

  • Giner, Beatriz; Gascón, Ignacio; Villares, Ana
  • Journal of Chemical & Engineering Data, Vol. 51, Issue 4
  • DOI: 10.1021/je0600653

Excess Enthalpy, Density, Speed of Sound, and Viscosity for 2-Methyltetrahydrofuran + 1-Butanol at (283.15, 298.15, and, 313.15) K
journal, May 2006

  • Vallés, Cristina; Pérez, Eduardo; Mainar, Ana M.
  • Journal of Chemical & Engineering Data, Vol. 51, Issue 3
  • DOI: 10.1021/je060017i

Pulse-Gradient Spin-Echo 1 H, 7 Li, and 19 F NMR Diffusion and Ionic Conductivity Measurements of 14 Organic Electrolytes Containing LiN(SO 2 CF 3 ) 2
journal, January 1999

  • Hayamizu, Kikuko; Aihara, Yuichi; Arai, Shigemasa
  • The Journal of Physical Chemistry B, Vol. 103, Issue 3
  • DOI: 10.1021/jp9825664

Molecular relaxation of lithium salts in 2-methyltetrahydrofuran at 25.degree.C
journal, May 1984

  • Delsignore, M.; Maaser, H. E.; Petrucci, S.
  • The Journal of Physical Chemistry, Vol. 88, Issue 11
  • DOI: 10.1021/j150655a045

Oxidative Stability and Initial Decomposition Reactions of Carbonate, Sulfone, and Alkyl Phosphate-Based Electrolytes
journal, April 2013

  • Borodin, Oleg; Behl, Wishvender; Jow, T. Richard
  • The Journal of Physical Chemistry C, Vol. 117, Issue 17
  • DOI: 10.1021/jp400527c

Computational applications in organic electrochemistry
journal, April 2017


Electrolytes for Lithium and Lithium-Ion Batteries
book, January 2014