DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molecular basis of P[II] major human rotavirus VP8* domain recognition of histo-blood group antigens

Abstract

Initial cell attachment of rotavirus (RV) to specific cell surface glycan receptors, which is the essential first step in RV infection, is mediated by the VP8* domain of the spike protein VP4. Recently, human histo-blood group antigens (HBGAs) have been identified as receptors or attachment factors for human RV strains. RV strains in the P[4] and P[8] genotypes of the P[II] genogroup share common recognition of the Lewis b (Leb) and H type 1 antigens, however, the molecular basis of receptor recognition by the major human P[8] RVs remains unknown due to lack of experimental structural information. Here, we used nuclear magnetic resonance (NMR) spectroscopy-based titration experiments and NMR-derived high ambiguity driven docking (HADDOCK) methods to elucidate the molecular basis for P[8] VP8* recognition of the Leb (LNDFH I) and type 1 HBGAs. We also used X-ray crystallography to determine the molecular details underlying P[6] recognition of H type 1 HBGAs. Unlike P[6]/P[19] VP8*s that recognize H type 1 HBGAs in a binding surface composed of an α-helix and a β-sheet, referred as the “βα binding site”, the P[8] and P[4] VP8*s bind Leb HBGAs in a previously undescribed pocket formed by the edges of two β-sheets, referred to asmore » the “ββ binding site”. Importantly, the P[8] and P[4] VP8*s retain binding capability to non-Leb type 1 HBGAs using the βα binding site. The presence of two distinct binding sites for Leb and non-Leb HBGA glycans in the P[8] and P[4] VP8* domains suggests host-pathogen co-evolution under structural and functional adaptation of RV pathogens to host glycan polymorphisms. Assessment and understanding of the precise impact of this co-evolutionary process in determining RV host ranges and cross-species RV transmission should facilitate improved RV vaccine development and prediction of future RV strain emergence and epidemics.« less

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [2];  [3]; ORCiD logo [3];  [3];  [3];  [4]; ORCiD logo [1]
  1. Miami Univ., Oxford, OH (United States)
  2. Cincinnati Children's Hospital Medical Center, Cincinnati, OH (United States); Chinese Academy of Medical Sciences, Tianjin (China)
  3. Cincinnati Children's Hospital Medical Center, Cincinnati, OH (United States)
  4. Cincinnati Children's Hospital Medical Center, Cincinnati, OH (United States); Univ. of Cincinnati, OH (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1618487
Resource Type:
Accepted Manuscript
Journal Name:
PLoS Pathogens
Additional Journal Information:
Journal Volume: 16; Journal Issue: 3; Journal ID: ISSN 1553-7374
Publisher:
Public Library of Science
Country of Publication:
United States
Language:
ENGLISH
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Xu, Shenyuan, Ahmed, Luay U., Stuckert, Michael Robert, McGinnis, Kristen Rose, Liu, Yang, Tan, Ming, Huang, Pengwei, Zhong, Weiming, Zhao, Dandan, Jiang, Xi, and Kennedy, Michael A. Molecular basis of P[II] major human rotavirus VP8* domain recognition of histo-blood group antigens. United States: N. p., 2020. Web. doi:10.1371/journal.ppat.1008386.
Xu, Shenyuan, Ahmed, Luay U., Stuckert, Michael Robert, McGinnis, Kristen Rose, Liu, Yang, Tan, Ming, Huang, Pengwei, Zhong, Weiming, Zhao, Dandan, Jiang, Xi, & Kennedy, Michael A. Molecular basis of P[II] major human rotavirus VP8* domain recognition of histo-blood group antigens. United States. https://doi.org/10.1371/journal.ppat.1008386
Xu, Shenyuan, Ahmed, Luay U., Stuckert, Michael Robert, McGinnis, Kristen Rose, Liu, Yang, Tan, Ming, Huang, Pengwei, Zhong, Weiming, Zhao, Dandan, Jiang, Xi, and Kennedy, Michael A. Tue . "Molecular basis of P[II] major human rotavirus VP8* domain recognition of histo-blood group antigens". United States. https://doi.org/10.1371/journal.ppat.1008386. https://www.osti.gov/servlets/purl/1618487.
@article{osti_1618487,
title = {Molecular basis of P[II] major human rotavirus VP8* domain recognition of histo-blood group antigens},
author = {Xu, Shenyuan and Ahmed, Luay U. and Stuckert, Michael Robert and McGinnis, Kristen Rose and Liu, Yang and Tan, Ming and Huang, Pengwei and Zhong, Weiming and Zhao, Dandan and Jiang, Xi and Kennedy, Michael A.},
abstractNote = {Initial cell attachment of rotavirus (RV) to specific cell surface glycan receptors, which is the essential first step in RV infection, is mediated by the VP8* domain of the spike protein VP4. Recently, human histo-blood group antigens (HBGAs) have been identified as receptors or attachment factors for human RV strains. RV strains in the P[4] and P[8] genotypes of the P[II] genogroup share common recognition of the Lewis b (Leb) and H type 1 antigens, however, the molecular basis of receptor recognition by the major human P[8] RVs remains unknown due to lack of experimental structural information. Here, we used nuclear magnetic resonance (NMR) spectroscopy-based titration experiments and NMR-derived high ambiguity driven docking (HADDOCK) methods to elucidate the molecular basis for P[8] VP8* recognition of the Leb (LNDFH I) and type 1 HBGAs. We also used X-ray crystallography to determine the molecular details underlying P[6] recognition of H type 1 HBGAs. Unlike P[6]/P[19] VP8*s that recognize H type 1 HBGAs in a binding surface composed of an α-helix and a β-sheet, referred as the “βα binding site”, the P[8] and P[4] VP8*s bind Leb HBGAs in a previously undescribed pocket formed by the edges of two β-sheets, referred to as the “ββ binding site”. Importantly, the P[8] and P[4] VP8*s retain binding capability to non-Leb type 1 HBGAs using the βα binding site. The presence of two distinct binding sites for Leb and non-Leb HBGA glycans in the P[8] and P[4] VP8* domains suggests host-pathogen co-evolution under structural and functional adaptation of RV pathogens to host glycan polymorphisms. Assessment and understanding of the precise impact of this co-evolutionary process in determining RV host ranges and cross-species RV transmission should facilitate improved RV vaccine development and prediction of future RV strain emergence and epidemics.},
doi = {10.1371/journal.ppat.1008386},
journal = {PLoS Pathogens},
number = 3,
volume = 16,
place = {United States},
year = {2020},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Schematic representation of VP8* from P[II] genogroup with its corresponding binding glycan structures. (a) Schematic representation of P[8] VP8* and its binding glycan structures, Leb tetra-saccharide and LNDFH I. (b) Schematic representation of P[4] VP8* and its binding glycan structures, LNDFH I and LNFP I. (c) Schematic representationmore » of P[6] VP8* and its binding glycan structures, LNT and LNFP I. (d) Schematic representation of P[19] VP8* and its binding glycan structures, LNT and LNFP I. The red boxes encircle Leb glycans and the blue boxes encircle non Leb glycans. (e) Inhibition of rotavirus Wa strain replication in HT29 cells. Left) Representative indirect immunofluorescence assay (IFA) microscopy image of P[8] RV Wa strain replication focuses in HT29 cells. Right) Quantitation of viral replication focus reductions observed in wells incubated with LNDFH1-BSA and H type 1-biotin-PAA in compared with cell culture wells with media only. Ley-PAA is a negative ligand control.« less

Save / Share:

Works referenced in this record:

Rotavirus and Severe Childhood Diarrhea
journal, February 2006

  • Parashar, Umesh D.; Gibson, Christopher J.; Bresee, Joseph S.
  • Emerging Infectious Diseases, Vol. 12, Issue 2
  • DOI: 10.3201/eid1202.050006

New rotavirus vaccines: Renewed optimism
journal, October 2006


Global, Regional, and National Estimates of Rotavirus Mortality in Children <5 Years of Age, 2000–2013
journal, April 2016

  • Tate, Jacqueline E.; Burton, Anthony H.; Boschi-Pinto, Cynthia
  • Clinical Infectious Diseases, Vol. 62, Issue suppl 2
  • DOI: 10.1093/cid/civ1013

Complete Genome Characterization of Recent and Ancient Belgian Pig Group A Rotaviruses and Assessment of Their Evolutionary Relationship with Human Rotaviruses
journal, November 2014

  • Theuns, Sebastiaan; Heylen, Elisabeth; Zeller, Mark
  • Journal of Virology, Vol. 89, Issue 2
  • DOI: 10.1128/JVI.02513-14

Identification of an avian group A rotavirus containing a novel VP4 gene with a close relationship to those of mammalian rotaviruses
journal, January 2013

  • Reetz, Jochen; Twardziok, Sven; Sachsenröder, Jana
  • Journal of General Virology, Vol. 94, Issue 1
  • DOI: 10.1099/vir.0.047381-0

Whole-genome characterization of a Peruvian alpaca rotavirus isolate expressing a novel VP4 genotype
journal, November 2016


Rotavirus VP8*: Phylogeny, Host Range, and Interaction with Histo-Blood Group Antigens
journal, July 2012

  • Liu, Yang; Huang, Pengwei; Tan, Ming
  • Journal of Virology, Vol. 86, Issue 18
  • DOI: 10.1128/JVI.00979-12

Rotavirus Strain Trends During the Postlicensure Vaccine Era: United States, 2008–2013
journal, June 2016

  • Bowen, Michael D.; Mijatovic-Rustempasic, Slavica; Esona, Mathew D.
  • Journal of Infectious Diseases, Vol. 214, Issue 5
  • DOI: 10.1093/infdis/jiw233

Distribution of rotavirus strains and strain-specific effectiveness of the rotavirus vaccine after its introduction: a systematic review and meta-analysis
journal, September 2014


Human P[6] Rotaviruses From Sub-Saharan Africa and Southeast Asia Are Closely Related to Those of Human P[4] and P[8] Rotaviruses Circulating Worldwide
journal, July 2016

  • Heylen, Elisabeth; Zeller, Mark; Ciarlet, Max
  • Journal of Infectious Diseases, Vol. 214, Issue 7
  • DOI: 10.1093/infdis/jiw247

The VP8 fragment of VP4 is the rhesus rotavirus hemagglutinin
journal, April 1991


Rotavirus Capsid Protein VP5* Permeabilizes Membranes
journal, April 1999


Glycosphingolipid Binding Specificities of Rotavirus: Identification of a Sialic Acid-Binding Epitope
journal, March 2001


Sialic acid dependence in rotavirus host cell invasion
journal, December 2008

  • Haselhorst, Thomas; Fleming, Fiona E.; Dyason, Jeffrey C.
  • Nature Chemical Biology, Vol. 5, Issue 2
  • DOI: 10.1038/nchembio.134

Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen
journal, April 2012

  • Hu, Liya; Crawford, Sue E.; Czako, Rita
  • Nature, Vol. 485, Issue 7397
  • DOI: 10.1038/nature10996

Spike Protein VP8* of Human Rotavirus Recognizes Histo-Blood Group Antigens in a Type-Specific Manner
journal, February 2012


The VP8* Domain of Neonatal Rotavirus Strain G10P[11] Binds to Type II Precursor Glycans
journal, April 2013

  • Ramani, S.; Cortes-Penfield, N. W.; Hu, L.
  • Journal of Virology, Vol. 87, Issue 13
  • DOI: 10.1128/JVI.03518-12

ABH and Related Histo-Blood Group Antigens; Immunochemical Differences in Carrier Isotypes and Their Distribution
journal, January 1989

  • Clausen, Henrik; Hakomori, Sen-itiroh
  • Vox Sanguinis, Vol. 56, Issue 1
  • DOI: 10.1159/000460912

Antigen structure and genetic basis of histo-blood groups A, B and O: their changes associated with human cancer
journal, December 1999


Structural diversity and biological importance of ABO, H, Lewis and secretor histo-blood group carbohydrates
journal, October 2016


Glycan Specificity of P[19] Rotavirus and Comparison with Those of Related P Genotypes
journal, August 2016

  • Liu, Yang; Ramelot, Theresa A.; Huang, Pengwei
  • Journal of Virology, Vol. 90, Issue 21
  • DOI: 10.1128/JVI.01494-16

Host Genetic Susceptibility to Enteric Viruses: A Systematic Review and Metaanalysis
journal, October 2015

  • Kambhampati, Anita; Payne, Daniel C.; Costantini, Veronica
  • Clinical Infectious Diseases, Vol. 62, Issue 1
  • DOI: 10.1093/cid/civ873

Both Lewis and Secretor Status Mediate Susceptibility to Rotavirus Infections in a Rotavirus Genotype–Dependent Manner
journal, August 2014

  • Nordgren, Johan; Sharma, Sumit; Bucardo, Filemon
  • Clinical Infectious Diseases, Vol. 59, Issue 11
  • DOI: 10.1093/cid/ciu633

Are Human P[14] Rotavirus Strains the Result of Interspecies Transmissions from Sheep or Other Ungulates That Belong to the Mammalian Order Artiodactyla?
journal, January 2009

  • Matthijnssens, Jelle; Potgieter, Christiaan A.; Ciarlet, Max
  • Journal of Virology, Vol. 83, Issue 7
  • DOI: 10.1128/JVI.02246-08

Structural basis of glycan specificity in neonate-specific bovine-human reassortant rotavirus
journal, September 2015

  • Hu, Liya; Ramani, Sasirekha; Czako, Rita
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9346

Human Milk Contains Novel Glycans That Are Potential Decoy Receptors for Neonatal Rotaviruses
journal, July 2014

  • Yu, Ying; Lasanajak, Yi; Song, Xuezheng
  • Molecular & Cellular Proteomics, Vol. 13, Issue 11
  • DOI: 10.1074/mcp.M114.039875

Recent Advances in Studies on Milk Oligosaccharides of Cows and Other Domestic Farm Animals
journal, March 2013

  • Urashima, Tadasu; Taufik, Epi; Fukuda, Kenji
  • Bioscience, Biotechnology, and Biochemistry, Vol. 77, Issue 3
  • DOI: 10.1271/bbb.120810

Novel Structural Insights into Rotavirus Recognition of Ganglioside Glycan Receptors
journal, November 2011

  • Yu, Xing; Coulson, Barbara S.; Fleming, Fiona E.
  • Journal of Molecular Biology, Vol. 413, Issue 5
  • DOI: 10.1016/j.jmb.2011.09.005

Structural basis of glycan specificity of P[19] VP8*: Implications for rotavirus zoonosis and evolution
journal, November 2017


Glycan recognition in globally dominant human rotaviruses
journal, July 2018


Unraveling the role of the secretor antigen in human rotavirus attachment to histo-blood group antigens
journal, June 2019


HADDOCK:  A Protein−Protein Docking Approach Based on Biochemical or Biophysical Information
journal, February 2003

  • Dominguez, Cyril; Boelens, Rolf; Bonvin, Alexandre M. J. J.
  • Journal of the American Chemical Society, Vol. 125, Issue 7
  • DOI: 10.1021/ja026939x

The HADDOCK web server for data-driven biomolecular docking
journal, April 2010

  • de Vries, Sjoerd J.; van Dijk, Marc; Bonvin, Alexandre M. J. J.
  • Nature Protocols, Vol. 5, Issue 5
  • DOI: 10.1038/nprot.2010.32

The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes
journal, February 2016

  • van Zundert, G. C. P.; Rodrigues, J. P. G. L. M.; Trellet, M.
  • Journal of Molecular Biology, Vol. 428, Issue 4
  • DOI: 10.1016/j.jmb.2015.09.014

WeNMR: Structural Biology on the Grid
journal, November 2012

  • Wassenaar, Tsjerk A.; van Dijk, Marc; Loureiro-Ferreira, Nuno
  • Journal of Grid Computing, Vol. 10, Issue 4
  • DOI: 10.1007/s10723-012-9246-z

Characterization of Ligand Binding by Saturation Transfer Difference NMR Spectroscopy
journal, June 1999


Group Epitope Mapping by Saturation Transfer Difference NMR To Identify Segments of a Ligand in Direct Contact with a Protein Receptor
journal, June 2001

  • Mayer, Moriz; Meyer, Bernd
  • Journal of the American Chemical Society, Vol. 123, Issue 25
  • DOI: 10.1021/ja0100120

Binding Patterns of Rotavirus Genotypes P[4], P[6], and P[8] in China with Histo-Blood Group Antigens
journal, August 2015


Revisiting the role of histo-blood group antigens in rotavirus host-cell invasion
journal, January 2015

  • Böhm, Raphael; Fleming, Fiona E.; Maggioni, Andrea
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms6907

Complete genetic characterization of human G2P[6] and G3P[6] rotavirus strains
journal, January 2013


Rotavirus Strain Types Circulating in Africa: Review of Studies Published during 1997–2006
journal, September 2010

  • Todd, Stacy; Page, Nicola A.; Duncan Steele, A.
  • The Journal of Infectious Diseases, Vol. 202, Issue S1
  • DOI: 10.1086/653555

Increased Susceptibility of Secretor Factor Gene Fut2-Null Mice to Experimental Vaginal Candidiasis
journal, July 2004


Norovirus–host interaction: Multi-selections by human histo-blood group antigens
journal, August 2011


Blood Relations: Blood Groups and Anthropology.
journal, December 1984

  • Sunderland, Eric; Mourant, A. E.
  • Man, Vol. 19, Issue 4
  • DOI: 10.2307/2802336

Global distribution of rotavirus serotypes/genotypes and its implication for the development and implementation of an effective rotavirus vaccine
journal, January 2004

  • Santos, Norma; Hoshino, Yasutaka
  • Reviews in Medical Virology, Vol. 15, Issue 1
  • DOI: 10.1002/rmv.448

Histo–Blood Group Antigen Phenotype Determines Susceptibility to Genotype-Specific Rotavirus Infections and Impacts Measures of Rotavirus Vaccine Efficacy
journal, January 2018

  • Lee, Benjamin; Dickson, Dorothy M.; deCamp, Allan C.
  • The Journal of Infectious Diseases, Vol. 217, Issue 9
  • DOI: 10.1093/infdis/jiy054

Rotavirus P[8] Infections in Persons with Secretor and Nonsecretor Phenotypes, Tunisia
journal, November 2015

  • Ayouni, Siwar; Sdiri-Loulizi, Khira; de Rougemont, Alexis
  • Emerging Infectious Diseases, Vol. 21, Issue 11
  • DOI: 10.3201/eid2111.141901

A FUT2 Gene Common Polymorphism Determines Resistance to Rotavirus A of the P[8] Genotype
journal, November 2013

  • Imbert-Marcille, Berthe-Marie; Barbé, Laure; Dupé, Mathilde
  • The Journal of Infectious Diseases, Vol. 209, Issue 8
  • DOI: 10.1093/infdis/jit655

Secretor and Salivary ABO Blood Group Antigen Status Predict Rotavirus Vaccine Take in Infants
journal, January 2017

  • Kazi, Abdul Momin; Cortese, Margaret M.; Yu, Ying
  • The Journal of Infectious Diseases, Vol. 215, Issue 5
  • DOI: 10.1093/infdis/jix028

Histo-blood group antigen-binding specificities of human rotaviruses are associated with gastroenteritis but not with in vitro infection
journal, August 2018

  • Barbé, Laure; Le Moullac-Vaidye, Béatrice; Echasserieau, Klara
  • Scientific Reports, Vol. 8, Issue 1
  • DOI: 10.1038/s41598-018-31005-4

Characterization and Molecular Epidemiology of Rotavirus Strains Recovered in Northern Pretoria, South Africa during 2003–2006
journal, September 2010

  • Seheri, L. M.; Page, N.; Dewar, J. B.
  • The Journal of Infectious Diseases, Vol. 202, Issue S1
  • DOI: 10.1086/653559

Review of Rotavirus Studies in Africa: 1976–2006
journal, September 2010

  • Waggie, Zainab; Hawkridge, Anthony; Hussey, Gregory D.
  • The Journal of Infectious Diseases, Vol. 202, Issue S1
  • DOI: 10.1086/653554

NMRPipe: A multidimensional spectral processing system based on UNIX pipes
journal, November 1995

  • Delaglio, Frank; Grzesiek, Stephan; Vuister, GeertenW.
  • Journal of Biomolecular NMR, Vol. 6, Issue 3
  • DOI: 10.1007/BF00197809

Probabilistic Interaction Network of Evidence Algorithm and its Application to Complete Labeling of Peak Lists from Protein NMR Spectroscopy
journal, March 2009


Using chemical shift perturbation to characterise ligand binding
journal, August 2013


SWISS-MODEL: homology modelling of protein structures and complexes
journal, May 2018

  • Waterhouse, Andrew; Bertoni, Martino; Bienert, Stefan
  • Nucleic Acids Research, Vol. 46, Issue W1
  • DOI: 10.1093/nar/gky427

The Rossmann Fourier autoindexing algorithm in MOSFLM
journal, October 1999

  • Powell, Harold R.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 55, Issue 10
  • DOI: 10.1107/S0907444999009506

Scaling and assessment of data quality
journal, December 2005

  • Evans, Philip
  • Acta Crystallographica Section D Biological Crystallography, Vol. 62, Issue 1, p. 72-82
  • DOI: 10.1107/S0907444905036693

Phaser crystallographic software
journal, July 2007

  • McCoy, Airlie J.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.
  • Journal of Applied Crystallography, Vol. 40, Issue 4
  • DOI: 10.1107/S0021889807021206

Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444910007493

Refinement of Macromolecular Structures by the Maximum-Likelihood Method
journal, May 1997

  • Murshudov, G. N.; Vagin, A. A.; Dodson, E. J.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 53, Issue 3
  • DOI: 10.1107/S0907444996012255

Overview of the CCP 4 suite and current developments
journal, March 2011

  • Winn, Martyn D.; Ballard, Charles C.; Cowtan, Kevin D.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S0907444910045749

MolProbity : all-atom structure validation for macromolecular crystallography
journal, December 2009

  • Chen, Vincent B.; Arendall, W. Bryan; Headd, Jeffrey J.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 1
  • DOI: 10.1107/S0907444909042073

UCSF Chimera?A visualization system for exploratory research and analysis
journal, January 2004

  • Pettersen, Eric F.; Goddard, Thomas D.; Huang, Conrad C.
  • Journal of Computational Chemistry, Vol. 25, Issue 13
  • DOI: 10.1002/jcc.20084

LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery
journal, October 2011

  • Laskowski, Roman A.; Swindells, Mark B.
  • Journal of Chemical Information and Modeling, Vol. 51, Issue 10
  • DOI: 10.1021/ci200227u

Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega
journal, January 2011

  • Sievers, Fabian; Wilm, Andreas; Dineen, David
  • Molecular Systems Biology, Vol. 7, Issue 1
  • DOI: 10.1038/msb.2011.75