skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dephasingless Laser Wakefield Acceleration

Abstract

Laser wakefield accelerators (LWFAs) produce significantly high gradients enabling compact accelerators and radiation sources, but face design limitations, such as dephasing, occurring when trapped electrons outrun the accelerating phase of the wakefield. In this report we combine spherical aberration with a novel cylindrically symmetric echelon optic to spatiotemporally structure an ultra-short, high-intensity laser pulse that can overcome dephasing by propagating at any velocity over any distance. The ponderomotive force of the spatiotemporally shaped pulse can drive a wakefield with a phase velocity equal to the speed of light in vacuum, preventing trapped electrons from outrunning the wake. Simulations in the linear regime and scaling laws in the bubble regime illustrate that this dephasingless LWFA can accelerate electrons to high energies in much shorter distances than a traditional LWFA—a single 4.5 m stage can accelerate electrons to TeV energies without the need for guiding structures.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1]
  1. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Publication Date:
Research Org.:
Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Fusion Energy Sciences (FES)
OSTI Identifier:
1618301
Alternate Identifier(s):
OSTI ID: 1607814
Report Number(s):
2019-306; 1563; 2519
Journal ID: ISSN 0031-9007; PRLTAO; 2019-306, 1563, 2519
Grant/Contract Number:  
NA0003856; SC0016253
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 124; Journal Issue: 13; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Palastro, J. P., Shaw, J. L., Franke, P., Ramsey, D., Simpson, T. T., and Froula, D. H. Dephasingless Laser Wakefield Acceleration. United States: N. p., 2020. Web. doi:10.1103/PhysRevLett.124.134802.
Palastro, J. P., Shaw, J. L., Franke, P., Ramsey, D., Simpson, T. T., & Froula, D. H. Dephasingless Laser Wakefield Acceleration. United States. doi:https://doi.org/10.1103/PhysRevLett.124.134802
Palastro, J. P., Shaw, J. L., Franke, P., Ramsey, D., Simpson, T. T., and Froula, D. H. Tue . "Dephasingless Laser Wakefield Acceleration". United States. doi:https://doi.org/10.1103/PhysRevLett.124.134802. https://www.osti.gov/servlets/purl/1618301.
@article{osti_1618301,
title = {Dephasingless Laser Wakefield Acceleration},
author = {Palastro, J. P. and Shaw, J. L. and Franke, P. and Ramsey, D. and Simpson, T. T. and Froula, D. H.},
abstractNote = {Laser wakefield accelerators (LWFAs) produce significantly high gradients enabling compact accelerators and radiation sources, but face design limitations, such as dephasing, occurring when trapped electrons outrun the accelerating phase of the wakefield. In this report we combine spherical aberration with a novel cylindrically symmetric echelon optic to spatiotemporally structure an ultra-short, high-intensity laser pulse that can overcome dephasing by propagating at any velocity over any distance. The ponderomotive force of the spatiotemporally shaped pulse can drive a wakefield with a phase velocity equal to the speed of light in vacuum, preventing trapped electrons from outrunning the wake. Simulations in the linear regime and scaling laws in the bubble regime illustrate that this dephasingless LWFA can accelerate electrons to high energies in much shorter distances than a traditional LWFA—a single 4.5 m stage can accelerate electrons to TeV energies without the need for guiding structures.},
doi = {10.1103/PhysRevLett.124.134802},
journal = {Physical Review Letters},
number = 13,
volume = 124,
place = {United States},
year = {2020},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Laser Electron Accelerator
journal, July 1979


Raman Amplification with a Flying Focus
journal, January 2018


Superluminous laser pulse in an active medium
journal, December 1993


Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons
journal, April 2005

  • Gordienko, S.; Pukhov, A.
  • Physics of Plasmas, Vol. 12, Issue 4
  • DOI: 10.1063/1.1884126

Ionization waves of arbitrary velocity driven by a flying focus
journal, March 2018


Monoenergetic beams of relativistic electrons from intense laser–plasma interactions
journal, September 2004

  • Mangles, S. P. D.; Murphy, C. D.; Najmudin, Z.
  • Nature, Vol. 431, Issue 7008
  • DOI: 10.1038/nature02939

Physics considerations for laser-plasma linear colliders
journal, October 2010

  • Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 13, Issue 10
  • DOI: 10.1103/PhysRevSTAB.13.101301

Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV
journal, June 2013

  • Wang, Xiaoming; Zgadzaj, Rafal; Fazel, Neil
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2988

Flying focus: Spatial and temporal control of intensity for laser-based applications
journal, March 2019

  • Froula, D. H.; Palastro, J. P.; Turnbull, D.
  • Physics of Plasmas, Vol. 26, Issue 3
  • DOI: 10.1063/1.5086308

Enhancement of Electron Energy to the Multi-GeV Regime by a Dual-Stage Laser-Wakefield Accelerator Pumped by Petawatt Laser Pulses
journal, October 2013


Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime
journal, June 2007


Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings
journal, January 2017


Demonstration of a Narrow Energy Spread, 0.5 GeV Electron Beam from a Two-Stage Laser Wakefield Accelerator
journal, July 2011


A laser–plasma accelerator producing monoenergetic electron beams
journal, September 2004


Photon Acceleration in a Flying Focus
journal, September 2019


Quasi-Phase-Matched Laser Wakefield Acceleration
journal, April 2014


Laser wakefield accelerator based light sources: potential applications and requirements
journal, July 2014


High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding
journal, September 2004

  • Geddes, C. G. R.; Toth, Cs.; van Tilborg, J.
  • Nature, Vol. 431, Issue 7008
  • DOI: 10.1038/nature02900

Ionization Waves of Arbitrary Velocity
journal, May 2018


Physics of laser-driven plasma-based electron accelerators
journal, August 2009


Petawatt Laser Guiding and Electron Beam Acceleration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide
journal, February 2019


Circumventing the Dephasing and Depletion Limits of Laser-Wakefield Acceleration
journal, September 2019


Multistage coupling of independent laser-plasma accelerators
journal, February 2016

  • Steinke, S.; van Tilborg, J.; Benedetti, C.
  • Nature, Vol. 530, Issue 7589
  • DOI: 10.1038/nature16525

Axiparabola: a long-focal-depth, high-resolution mirror for broadband high-intensity lasers
journal, January 2019

  • Smartsev, Slava; Caizergues, Clément; Oubrerie, Kosta
  • Optics Letters, Vol. 44, Issue 14
  • DOI: 10.1364/OL.44.003414

Spatiotemporal control of laser intensity
journal, March 2018


Laser wakefield acceleration and relativistic optical guiding
journal, November 1988

  • Sprangle, P.; Esarey, E.; Ting, A.
  • Applied Physics Letters, Vol. 53, Issue 22
  • DOI: 10.1063/1.100300

Trapping, dark current, and wave breaking in nonlinear plasma waves
journal, March 2006

  • Schroeder, C. B.; Esarey, E.; Shadwick, B. A.
  • Physics of Plasmas, Vol. 13, Issue 3
  • DOI: 10.1063/1.2173960