skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 3D domain swapping in the TIM barrel of the α subunit of Streptococcus pneumoniae tryptophan synthase

Abstract

Tryptophan synthase catalyzes the last two steps of tryptophan biosynthesis in plants, fungi and bacteria. It consists of two protein chains, designated α and β, encoded by trpA and trpB genes, that function as an αββα complex. Structural and functional features of tryptophan synthase have been extensively studied, explaining the roles of individual residues in the two active sites in catalysis and allosteric regulation. TrpA serves as a model for protein-folding studies. In 1969, Jackson and Yanofsky observed that the typically monomeric TrpA forms a small population of dimers. Dimerization was postulated to take place through an exchange of structural elements of the monomeric chains, a phenomenon later termed 3D domain swapping. The structural details of the TrpA dimer have remained unknown. Here, the crystal structure of the Streptococcus pneumoniae TrpA homodimer is reported, demonstrating 3D domain swapping in a TIM-barrel fold for the first time. The N-terminal domain comprising the H0–S1–H1–S2 elements is exchanged, while the hinge region corresponds to loop L2 linking strand S2 to helix H2′. The structural elements S2 and L2 carry the catalytic residues Glu52 and Asp63. As the S2 element is part of the swapped domain, the architecture of the catalytic apparatus in themore » dimer is recreated from two protein chains. The homodimer interface overlaps with the α–β interface of the tryptophan synthase αββα heterotetramer, suggesting that the 3D domain-swapped dimer cannot form a complex with the β subunit. In the crystal, the dimers assemble into a decamer comprising two pentameric rings.« less

Authors:
; ORCiD logo; ; ; ORCiD logo; ORCiD logo;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE; National Institutes of Health (NIH)
OSTI Identifier:
1617954
Alternate Identifier(s):
OSTI ID: 1660745
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Published Article
Journal Name:
Acta Crystallographica. Section D. Structural Biology
Additional Journal Information:
Journal Name: Acta Crystallographica. Section D. Structural Biology Journal Volume: 76 Journal Issue: 2; Journal ID: ISSN 2059-7983
Publisher:
IUCr
Country of Publication:
United Kingdom
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; tryptophan synthase; TIM barrel; 3D domain swapping; protein oligomerization; Streptococcus pneumoniae

Citation Formats

Michalska, Karolina, Kowiel, Marcin, Bigelow, Lance, Endres, Michael, Gilski, Miroslaw, Jaskolski, Mariusz, and Joachimiak, Andrzej. 3D domain swapping in the TIM barrel of the α subunit of Streptococcus pneumoniae tryptophan synthase. United Kingdom: N. p., 2020. Web. https://doi.org/10.1107/S2059798320000212.
Michalska, Karolina, Kowiel, Marcin, Bigelow, Lance, Endres, Michael, Gilski, Miroslaw, Jaskolski, Mariusz, & Joachimiak, Andrzej. 3D domain swapping in the TIM barrel of the α subunit of Streptococcus pneumoniae tryptophan synthase. United Kingdom. https://doi.org/10.1107/S2059798320000212
Michalska, Karolina, Kowiel, Marcin, Bigelow, Lance, Endres, Michael, Gilski, Miroslaw, Jaskolski, Mariusz, and Joachimiak, Andrzej. Fri . "3D domain swapping in the TIM barrel of the α subunit of Streptococcus pneumoniae tryptophan synthase". United Kingdom. https://doi.org/10.1107/S2059798320000212.
@article{osti_1617954,
title = {3D domain swapping in the TIM barrel of the α subunit of Streptococcus pneumoniae tryptophan synthase},
author = {Michalska, Karolina and Kowiel, Marcin and Bigelow, Lance and Endres, Michael and Gilski, Miroslaw and Jaskolski, Mariusz and Joachimiak, Andrzej},
abstractNote = {Tryptophan synthase catalyzes the last two steps of tryptophan biosynthesis in plants, fungi and bacteria. It consists of two protein chains, designated α and β, encoded by trpA and trpB genes, that function as an αββα complex. Structural and functional features of tryptophan synthase have been extensively studied, explaining the roles of individual residues in the two active sites in catalysis and allosteric regulation. TrpA serves as a model for protein-folding studies. In 1969, Jackson and Yanofsky observed that the typically monomeric TrpA forms a small population of dimers. Dimerization was postulated to take place through an exchange of structural elements of the monomeric chains, a phenomenon later termed 3D domain swapping. The structural details of the TrpA dimer have remained unknown. Here, the crystal structure of the Streptococcus pneumoniae TrpA homodimer is reported, demonstrating 3D domain swapping in a TIM-barrel fold for the first time. The N-terminal domain comprising the H0–S1–H1–S2 elements is exchanged, while the hinge region corresponds to loop L2 linking strand S2 to helix H2′. The structural elements S2 and L2 carry the catalytic residues Glu52 and Asp63. As the S2 element is part of the swapped domain, the architecture of the catalytic apparatus in the dimer is recreated from two protein chains. The homodimer interface overlaps with the α–β interface of the tryptophan synthase αββα heterotetramer, suggesting that the 3D domain-swapped dimer cannot form a complex with the β subunit. In the crystal, the dimers assemble into a decamer comprising two pentameric rings.},
doi = {10.1107/S2059798320000212},
journal = {Acta Crystallographica. Section D. Structural Biology},
number = 2,
volume = 76,
place = {United Kingdom},
year = {2020},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1107/S2059798320000212

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Enzymatic properties of mutant Escherichia coli tryptophan synthase alpha-subunits.
journal, October 1991


Recent developments in classical density modification
journal, March 2010


Tryptophan synthase: the workings of a channeling nanomachine
journal, June 2008


The A Protein of the Tryptophan Synthetase of Escherichia coli
journal, May 1962


Evolutionary relationship of two ancient protein superfolds
journal, July 2014

  • Farías-Rico, José Arcadio; Schmidt, Steffen; Höcker, Birte
  • Nature Chemical Biology, Vol. 10, Issue 9
  • DOI: 10.1038/nchembio.1579

Overview of the CCP 4 suite and current developments
journal, March 2011

  • Winn, Martyn D.; Ballard, Charles C.; Cowtan, Kevin D.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S0907444910045749

Tryptophan synthase: a mine for enzymologists
journal, April 2009

  • Raboni, Samanta; Bettati, Stefano; Mozzarelli, Andrea
  • Cellular and Molecular Life Sciences, Vol. 66, Issue 14
  • DOI: 10.1007/s00018-009-0028-0

A small-molecule allosteric inhibitor of Mycobacterium tuberculosis tryptophan synthase
journal, July 2017

  • Wellington, Samantha; Nag, Partha P.; Michalska, Karolina
  • Nature Chemical Biology, Vol. 13, Issue 9
  • DOI: 10.1038/nchembio.2420

Ultrahigh resolution drug design I: Details of interactions in human aldose reductase-inhibitor complex at 0.66 Å
journal, April 2004

  • Howard, E. I.; Sanishvili, R.; Cachau, R. E.
  • Proteins: Structure, Function, and Bioinformatics, Vol. 55, Issue 4
  • DOI: 10.1002/prot.20015

Three-dimensional structure of the tryptophan synthase alpha 2 beta 2 multienzyme complex from Salmonella typhimurium.
journal, November 1988


Evolution of substrate specificity in a retained enzyme driven by gene loss
journal, March 2017

  • Juárez-Vázquez, Ana Lilia; Edirisinghe, Janaka N.; Verduzco-Castro, Ernesto A.
  • eLife, Vol. 6
  • DOI: 10.7554/eLife.22679

Homodimers of Mutant Tryptophan Synthase α-Subunits in Escherichia coli
journal, November 2001

  • Kim, Jong Won; Kim, Eun Young; Park, Hoo Hwi
  • Biochemical and Biophysical Research Communications, Vol. 289, Issue 2
  • DOI: 10.1006/bbrc.2001.6022

One Fold with Many Functions: The Evolutionary Relationships between TIM Barrel Families Based on their Sequences, Structures and Functions
journal, August 2002


3D domain swapping: A mechanism for oligomer assembly
journal, December 1995

  • Bennett, Melanie J.; Schlunegger, Michael P.; Eisenberg, David
  • Protein Science, Vol. 4, Issue 12
  • DOI: 10.1002/pro.5560041202

High-throughput protein purification and quality assessment for crystallization
journal, September 2011


3DSwap: curated knowledgebase of proteins involved in 3D domain swapping
journal, January 2011


The molecular pathway for the allosteric regulation of tryptophan synthase
journal, April 2003

  • Raboni, Samanta; Pioselli, Barbara; Bettati, Stefano
  • Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, Vol. 1647, Issue 1-2
  • DOI: 10.1016/S1570-9639(03)00084-0

Methods used in the structure determination of bovine mitochondrial F1 ATPase
journal, January 1996

  • Abrahams, J. P.; Leslie, A. G. W.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 52, Issue 1
  • DOI: 10.1107/S0907444995008754

ACHESYM : an algorithm and server for standardized placement of macromolecular models in the unit cell
journal, November 2014

  • Kowiel, Marcin; Jaskolski, Mariusz; Dauter, Zbigniew
  • Acta Crystallographica Section D Biological Crystallography, Vol. 70, Issue 12
  • DOI: 10.1107/S1399004714024572

XDS
journal, January 2010

  • Kabsch, Wolfgang
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2
  • DOI: 10.1107/S0907444909047337

Inference of Macromolecular Assemblies from Crystalline State
journal, September 2007


Domain swapping: entangling alliances between proteins.
journal, April 1994

  • Bennett, M. J.; Choe, S.; Eisenberg, D.
  • Proceedings of the National Academy of Sciences, Vol. 91, Issue 8
  • DOI: 10.1073/pnas.91.8.3127

Comparison of the Tryptophan Synthetase α Subunits of Several Species of Enterobacteriaceae
journal, January 1966


3D domain swapping, protein oligomerization, and amyloid formation.
journal, December 2001


Accurate bond and angle parameters for X-ray protein structure refinement
journal, July 1991

  • Engh, R. A.; Huber, R.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 47, Issue 4
  • DOI: 10.1107/S0108767391001071

The Buccaneer software for automated model building. 1. Tracing protein chains
journal, August 2006


The crystal structure of a 3D domain-swapped dimer of RNase A at a 2.1-A resolution
journal, March 1998

  • Liu, Y.; Hart, P. J.; Schlunegger, M. P.
  • Proceedings of the National Academy of Sciences, Vol. 95, Issue 7
  • DOI: 10.1073/pnas.95.7.3437

Conservation of the structure and function of bacterial tryptophan synthases
journal, May 2019


Fibrillogenic Oligomers of Human Cystatin C Are Formed by Propagated Domain Swapping
journal, April 2007

  • Wahlbom, Maria; Wang, Xin; Lindström, Veronica
  • Journal of Biological Chemistry, Vol. 282, Issue 25
  • DOI: 10.1074/jbc.M611368200

Design of proteins from smaller fragments—learning from evolution
journal, August 2014


MolProbity : all-atom structure validation for macromolecular crystallography
journal, December 2009

  • Chen, Vincent B.; Arendall, W. Bryan; Headd, Jeffrey J.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 1
  • DOI: 10.1107/S0907444909042073

Automatic protein structure solution from weak X-ray data
journal, November 2013

  • Skubák, Pavol; Pannu, Navraj S.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3777

Ligation-independent cloning of PCR products (LIC-PCR)
journal, January 1990

  • Aslanidis, Charalampos; de Jong, Pieter J.
  • Nucleic Acids Research, Vol. 18, Issue 20
  • DOI: 10.1093/nar/18.20.6069

Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444910007493

From ancestral peptides to designed proteins
journal, February 2018


REFMAC 5 for the refinement of macromolecular crystal structures
journal, March 2011

  • Murshudov, Garib N.; Skubák, Pavol; Lebedev, Andrey A.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S0907444911001314

Crystal structure refinement with SHELXL
journal, January 2015

  • Sheldrick, George M.
  • Acta Crystallographica Section C Structural Chemistry, Vol. 71, Issue 1, p. 3-8
  • DOI: 10.1107/S2053229614024218

Cleavable C-terminal His-tag vectors for structure determination
journal, March 2010

  • Eschenfeldt, William H.; Maltseva, Natalia; Stols, Lucy
  • Journal of Structural and Functional Genomics, Vol. 11, Issue 1
  • DOI: 10.1007/s10969-010-9082-y

On the treatment of negative intensity observations
journal, July 1978


A combined approach to improving large-scale production of tobacco etch virus protease
journal, September 2007

  • Blommel, Paul G.; Fox, Brian G.
  • Protein Expression and Purification, Vol. 55, Issue 1, p. 53-68
  • DOI: 10.1016/j.pep.2007.04.013

Express Primer Tool for High-Throughput Gene Cloning and Expression
journal, December 2002

  • Yoon, J. R.; Laible, P. D.; Gu, M.
  • BioTechniques, Vol. 33, Issue 6
  • DOI: 10.2144/02336bc03

Exploring the Roles of Proline in Three-Dimensional Domain Swapping from Structure Analysis and Molecular Dynamics Simulations
journal, November 2017


Three-dimensional domain swapping in p13suc1 occurs in the unfolded state and is controlled by conserved proline residues
journal, May 2001

  • Rousseau, F.; Schymkowitz, J. W. H.; Wilkinson, H. R.
  • Proceedings of the National Academy of Sciences, Vol. 98, Issue 10
  • DOI: 10.1073/pnas.101542098

The Biosyntheses of Tryptophan and Niacin and their Relationships
journal, August 1951

  • Bonner, David M.; Yanofsky, Charles
  • The Journal of Nutrition, Vol. 44, Issue 4
  • DOI: 10.1093/jn/44.4.603

The Formation and Properties of Dimers of the Tryptophan Synthetase αSubunit of Escherichia coli
journal, September 1969


A Cis-Prolyl Peptide Bond Isomerization Dominates the Folding of the Alpha Subunit of Trp Synthase, a TIM Barrel Protein
journal, September 2002


Specific Structure Appears at the N terminus in the Sub-millisecond Folding Intermediate of the Alpha Subunit of Tryptophan Synthase, a TIM Barrel Protein
journal, August 2005

  • Wu, Ying; Vadrevu, Ramakrishna; Yang, Xiaoyan
  • Journal of Molecular Biology, Vol. 351, Issue 3
  • DOI: 10.1016/j.jmb.2005.06.006

Automation of protein purification for structural genomics
journal, March 2004


Allosteric regulation of substrate channeling and catalysis in the tryptophan synthase bienzyme complex
journal, March 2012


An Obligatory Intermediate Controls the Folding of the α-Subunit of Tryptophan Synthase, a TIM Barrel Protein
journal, April 2005

  • Wintrode, Patrick L.; Rojsajjakul, Teerapat; Vadrevu, Ramakrishna
  • Journal of Molecular Biology, Vol. 347, Issue 5
  • DOI: 10.1016/j.jmb.2005.01.064

Tryptophan Synthase Uses an Atypical Mechanism To Achieve Substrate Specificity
journal, December 2016


Purification and characterization of trp aporepressor.
journal, February 1983

  • Joachimiak, A.; Kelley, R. L.; Gunsalus, R. P.
  • Proceedings of the National Academy of Sciences, Vol. 80, Issue 3
  • DOI: 10.1073/pnas.80.3.668