skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Determination of background doping polarity of unintentionally doped semiconductor layers

Abstract

Here, we present a method of determining the background doping type in semiconductors using capacitance–voltage measurements on overetched double mesa p–i–n or n–i–p structures. Unlike Hall measurements, this method is not limited by the conductivity of the substrate. By measuring the capacitance of devices with varying top and bottom mesa sizes, we were able to conclusively determine which mesa contained the p–n junction, revealing the polarity of the intrinsic layer. This method, when demonstrated on GaSb p–i–n and n–i–p structures, concluded that the material is residually doped p-type, which is well established by other sources. The method was then applied to a 10 monolayer InAs/10 monolayer AlSb superlattice, for which the doping polarity was unknown, and indicated that this material is also p-type.

Authors:
 [1];  [1];  [1];  [1]; ORCiD logo [1];  [2];  [2];  [3];  [3];  [4]; ORCiD logo [1]
  1. The Ohio State Univ., Columbus, OH (United States)
  2. Univ. of Illinois, Chicago, IL (United States)
  3. Univ. of Virginia, Charlottesville, VA (United States)
  4. Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1617309
Report Number(s):
SAND-2019-15119J
Journal ID: ISSN 0003-6951; 682173
Grant/Contract Number:  
AC04-94AL85000; NA0003525
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 116; Journal Issue: 7; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING

Citation Formats

Fink, D. R., Lee, S., Kodati, S. H., Rogers, V., Ronningen, T. J., Winslow, M., Grein, C. H., Jones, A. H., Campbell, J. C., Klem, J. F., and Krishna, S. Determination of background doping polarity of unintentionally doped semiconductor layers. United States: N. p., 2020. Web. https://doi.org/10.1063/1.5142377.
Fink, D. R., Lee, S., Kodati, S. H., Rogers, V., Ronningen, T. J., Winslow, M., Grein, C. H., Jones, A. H., Campbell, J. C., Klem, J. F., & Krishna, S. Determination of background doping polarity of unintentionally doped semiconductor layers. United States. https://doi.org/10.1063/1.5142377
Fink, D. R., Lee, S., Kodati, S. H., Rogers, V., Ronningen, T. J., Winslow, M., Grein, C. H., Jones, A. H., Campbell, J. C., Klem, J. F., and Krishna, S. Wed . "Determination of background doping polarity of unintentionally doped semiconductor layers". United States. https://doi.org/10.1063/1.5142377. https://www.osti.gov/servlets/purl/1617309.
@article{osti_1617309,
title = {Determination of background doping polarity of unintentionally doped semiconductor layers},
author = {Fink, D. R. and Lee, S. and Kodati, S. H. and Rogers, V. and Ronningen, T. J. and Winslow, M. and Grein, C. H. and Jones, A. H. and Campbell, J. C. and Klem, J. F. and Krishna, S.},
abstractNote = {Here, we present a method of determining the background doping type in semiconductors using capacitance–voltage measurements on overetched double mesa p–i–n or n–i–p structures. Unlike Hall measurements, this method is not limited by the conductivity of the substrate. By measuring the capacitance of devices with varying top and bottom mesa sizes, we were able to conclusively determine which mesa contained the p–n junction, revealing the polarity of the intrinsic layer. This method, when demonstrated on GaSb p–i–n and n–i–p structures, concluded that the material is residually doped p-type, which is well established by other sources. The method was then applied to a 10 monolayer InAs/10 monolayer AlSb superlattice, for which the doping polarity was unknown, and indicated that this material is also p-type.},
doi = {10.1063/1.5142377},
journal = {Applied Physics Letters},
number = 7,
volume = 116,
place = {United States},
year = {2020},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Control of the residual doping of InAs/(GaIn)Sb infrared superlattices
journal, September 2000

  • Bürkle, L.; Fuchs, F.; Schmitz, J.
  • Applied Physics Letters, Vol. 77, Issue 11
  • DOI: 10.1063/1.1310167

Minority‐carrier lifetimes and internal quantum efficiency of surface‐free GaAs
journal, December 1978

  • Nelson, R. J.; Sobers, R. G.
  • Journal of Applied Physics, Vol. 49, Issue 12
  • DOI: 10.1063/1.324530

Application of Bryan’s algorithm to the mobility spectrum analysis of semiconductor devices
journal, November 2003

  • Chrastina, D.; Hague, J. P.; Leadley, D. R.
  • Journal of Applied Physics, Vol. 94, Issue 10
  • DOI: 10.1063/1.1621719

Explanation of the origin of electrons in the unintentionally doped InAs/AlSb system
journal, July 1995

  • Shen, Jun
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 13, Issue 4
  • DOI: 10.1116/1.587885

Characterization of carriers in GaSb∕InAs superlattice grown on conductive GaSb substrate
journal, January 2008

  • Chandrasekhar Rao, T. V.; Antoszewski, J.; Faraone, L.
  • Applied Physics Letters, Vol. 92, Issue 1
  • DOI: 10.1063/1.2831666

Determination of electrical transport properties using a novel magnetic field‐dependent Hall technique
journal, July 1987

  • Beck, W. A.; Anderson, J. R.
  • Journal of Applied Physics, Vol. 62, Issue 2
  • DOI: 10.1063/1.339780

Quantitative mobility spectrum analysis of carriers in GaSb/InAs/GaSb superlattice
journal, January 2008

  • Chandrasekhar Rao, T. V.; Antoszewski, J.; Rodriguez, J. B.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 26, Issue 3
  • DOI: 10.1116/1.2839641

Background carrier concentration in midwave and longwave InAs/GaSb type II superlattices on GaAs substrate
journal, August 2010

  • Khoshakhlagh, A.; Jaeckel, F.; Hains, C.
  • Applied Physics Letters, Vol. 97, Issue 5
  • DOI: 10.1063/1.3457908

Vertical minority carrier electron transport in p-type InAs/GaSb type-II superlattices
journal, December 2012

  • Umana-Membreno, G. A.; Klein, B.; Kala, H.
  • Applied Physics Letters, Vol. 101, Issue 25
  • DOI: 10.1063/1.4772954

An automatic carrier concentration profile plotter using an electrochemical technique
journal, November 1975

  • Ambridge, T.; Faktor, M. M.
  • Journal of Applied Electrochemistry, Vol. 5, Issue 4
  • DOI: 10.1007/BF00608796

Molecular beam epitaxy of AlSb
journal, June 1982

  • Chang, Chin‐An; Takaoka, H.; Chang, L. L.
  • Applied Physics Letters, Vol. 40, Issue 11
  • DOI: 10.1063/1.92976

Electrical modeling of InSb PiN photodiode for avalanche operation
journal, May 2013

  • Abautret, J.; Perez, J. P.; Evirgen, A.
  • Journal of Applied Physics, Vol. 113, Issue 18
  • DOI: 10.1063/1.4804956

Dark current analysis of InAs/GaSb superlattices at low temperatures
journal, November 2009


Choice of electrolyte for doping profiling in Si by electrochemical C–V technique
journal, March 2001


Capacitance-voltage investigation of high-purity InAs∕GaSb superlattice photodiodes
journal, January 2006

  • Hood, Andrew; Hoffman, Darin; Wei, Yajun
  • Applied Physics Letters, Vol. 88, Issue 5
  • DOI: 10.1063/1.2172399

Type-II superlattice photodetectors versus HgCdTe photodiodes
journal, November 2019


Structural and electrical characterizations of In x Ga 1-x As/InP structures for infrared photodetector applications
journal, March 2014

  • Asar, Tarık; Özçelik, Süleyman; Özbay, Ekmel
  • Journal of Applied Physics, Vol. 115, Issue 10
  • DOI: 10.1063/1.4868056

Growth optimization for low residual carriers in undoped midinfrared InAs/GaSb superlattices
journal, January 2008

  • Haugan, H. J.; Elhamri, S.; Brown, G. J.
  • Journal of Applied Physics, Vol. 104, Issue 7
  • DOI: 10.1063/1.2993748

High‐purity GaSb epitaxial layers grown from Sb‐rich solutions
journal, January 1990

  • Anayama, C.; Tanahashi, T.; Kuwatsuka, H.
  • Applied Physics Letters, Vol. 56, Issue 3
  • DOI: 10.1063/1.102842

Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation
journal, January 2010

  • Plis, E.; Khoshakhlagh, A.; Myers, S.
  • Applied Physics Letters, Vol. 96, Issue 3
  • DOI: 10.1063/1.3275711

Unambiguous determination of carrier concentration and mobility for InAs/GaSb superlattice photodiode optimization
journal, August 2009

  • Cervera, C.; Rodriguez, J. B.; Perez, J. P.
  • Journal of Applied Physics, Vol. 106, Issue 3
  • DOI: 10.1063/1.3191175

Quantitative mobility spectrum analysis of multicarrier conduction in semiconductors
journal, January 1997

  • Meyer, J. R.; Hoffman, C. A.; Antoszewski, J.
  • Journal of Applied Physics, Vol. 81, Issue 2
  • DOI: 10.1063/1.364211

Improved quantitative mobility spectrum analysis for Hall characterization
journal, November 1998

  • Vurgaftman, I.; Meyer, J. R.; Hoffman, C. A.
  • Journal of Applied Physics, Vol. 84, Issue 9
  • DOI: 10.1063/1.368741

InAs-based p-n homojunction diodes: Doping effects and impact of doping on device parameters
journal, September 2006

  • Yi, Changhyun; Kim, Tong-Ho; Brown, April S.
  • Journal of Electronic Materials, Vol. 35, Issue 9
  • DOI: 10.1007/s11664-006-0223-9