skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Blinding multiprobe cosmological experiments

Abstract

The goal of blinding is to hide an experiment’s critical results – here the inferred cosmological parameters – until all decisions affecting its analysis have been finalized. This is especially important in the current era of precision cosmology, when the results of any new experiment are closely scrutinized for consistency or tension with previous results. In analyses that combine multiple observational probes, like the combination of galaxy clustering and weak lensing in the Dark Energy Survey (DES), it is challenging to blind the results while retaining the ability to check for (in)consistency between different parts of the data. In this paper, we propose a simple new blinding transformation, which works by modifying the summary statistics that are input to parameter estimation, such as two-point correlation functions. The transformation shifts the measured statistics to new values that are consistent with (blindly) shifted cosmological parameters while preserving internal (in)consistency. We apply the blinding transformation to simulated data for the projected DES Year 3 galaxy clustering and weak lensing analysis, demonstrating that practical blinding is achieved without significant perturbation of internal-consistency checks, as measured here by degradation of the χ2 between the data and best-fitting model. Our blinding method’s performance is expected tomore » improve as experiments evolve to higher precision and accuracy.« less

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [4];  [5];  [6];  [7];  [7];  [8];  [9];  [10];  [11];  [7];  [6];  [12];  [13];  [14];  [15];  [16];  [17] more »;  [18];  [19];  [20];  [11];  [21];  [22];  [23];  [24];  [8];  [25];  [26];  [13];  [17];  [27];  [22];  [28];  [2];  [29];  [7];  [11];  [2];  [30];  [31];  [13];  [32];  [17];  [24];  [13];  [31];  [33];  [18];  [7];  [3];  [23];  [18];  [34];  [35];  [3];  [36];  [37];  [38];  [39];  [7];  [40];  [41] « less
  1. Kavli Institute for Particle Astrophysics & Cosmology, PO Box 2450, Stanford University, Stanford, CA 94305, USA, Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  2. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
  3. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  4. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK, Max Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, D-85748 Garching, Germany
  5. Department of Astronomy/Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA
  6. Kavli Institute for Particle Astrophysics & Cosmology, PO Box 2450, Stanford University, Stanford, CA 94305, USA, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  7. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA
  8. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain
  9. LSST, 933 North Cherry Avenue, Tucson, AZ 85721, USA, Physics Department, 2320 Chamberlin Hall, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706-1390, USA
  10. CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France, Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France
  11. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK
  12. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), E-28040 Madrid, Spain, Laboratório Interinstitucional de e-Astronomia – LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil
  13. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA, National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  14. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain
  15. Physics Department, 2320 Chamberlin Hall, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706-1390, USA
  16. INAF-Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34143 Trieste, Italy, Institute for Fundamental Physics of the Universe, Via Beirut 2, I-34014 Trieste, Italy
  17. Laboratório Interinstitucional de e-Astronomia – LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil, Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil
  18. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), E-28040 Madrid, Spain
  19. Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India
  20. Excellence Cluster Origins, Boltzmannstr. 2, D-85748 Garching, Germany, Faculty of Physics, Ludwig-Maximilians-Universität, Scheinerstr. 1, D-81679 Munich, Germany
  21. Department of Astronomy/Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  22. Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA
  23. Institut d’Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain, Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain
  24. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA, Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  25. Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA, Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  26. Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA, Kavli Institute for Particle Astrophysics & Cosmology, PO Box 2450, Stanford University, Stanford, CA 94305, USA, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  27. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland
  28. Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA
  29. Australian Astronomical Optics, Macquarie University, North Ryde, NSW 2113, Australia, Lowell Observatory, 1400 Mars Hill Rd, Flagstaff, AZ 86001, USA
  30. George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
  31. Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA
  32. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain, Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain
  33. Department of Physics and Astronomy, Pevensey Building, University of Sussex, Brighton BN1 9QH, UK
  34. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
  35. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
  36. Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK
  37. Department of Physics, Duke University, Durham, NC 27708, USA
  38. Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile
  39. Excellence Cluster Origins, Boltzmannstr. 2, D-85748 Garching, Germany, Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching, Germany, Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians Universität München, Scheinerstr. 1, D-81679 München, Germany
  40. Institute for Astronomy, University of Edinburgh, Edinburgh EH9 3HJ, UK
  41. (
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Univ. of Michigan, Ann Arbor, MI (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE Office of Science (SC), High Energy Physics (HEP); USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
Contributing Org.:
DES Collaboration
OSTI Identifier:
1617058
Alternate Identifier(s):
OSTI ID: 1581419; OSTI ID: 1638182; OSTI ID: 1646641; OSTI ID: 1659587; OSTI ID: 1688700
Report Number(s):
arXiv:1911.05929; DES-2019-0427; FERMILAB-PUB-19-563-AE
Journal ID: ISSN 0035-8711
Grant/Contract Number:  
SC0007901; FG02-95ER40899; AC02-05CH11231; AC02-07CH11359; AST-1615555; AST-1813834; AC02-76SF00515; SC0007859; AC05-00OR22725; SC0019193
Resource Type:
Published Article
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Name: Monthly Notices of the Royal Astronomical Society Journal Volume: 494 Journal Issue: 3; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United Kingdom
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; methods: data analysis: methods: numerical: methods: statistical: cosmology: observations; large-scale structure of Universe

Citation Formats

Muir, J., Bernstein, G. M., Huterer, D., Elsner, F., Krause, E., Roodman, A., Allam, S., Annis, J., Avila, S., Bechtol, K., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Cawthon, R., Costanzi, M., da Costa, L. N., De Vicente, J., Desai, S., Dietrich, J. P., Doel, P., Eifler, T. F., Everett, S., Fosalba, P., Frieman, J., García-Bellido, J., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Hartley, W. G., Hollowood, D. L., James, D. J., Jarvis, M., Kuehn, K., Kuropatkin, N., Lahav, O., March, M., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Plazas, A. A., Romer, A. K., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Smith, M., Suchyta, E., Tarle, G., Thomas, D., Troxel, M. A., Walker, A. R., Weller, J., Wester, W., Zuntz, J., and DES Collaboration). Blinding multiprobe cosmological experiments. United Kingdom: N. p., 2020. Web. doi:10.1093/mnras/staa965.
Muir, J., Bernstein, G. M., Huterer, D., Elsner, F., Krause, E., Roodman, A., Allam, S., Annis, J., Avila, S., Bechtol, K., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Cawthon, R., Costanzi, M., da Costa, L. N., De Vicente, J., Desai, S., Dietrich, J. P., Doel, P., Eifler, T. F., Everett, S., Fosalba, P., Frieman, J., García-Bellido, J., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Hartley, W. G., Hollowood, D. L., James, D. J., Jarvis, M., Kuehn, K., Kuropatkin, N., Lahav, O., March, M., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Plazas, A. A., Romer, A. K., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Smith, M., Suchyta, E., Tarle, G., Thomas, D., Troxel, M. A., Walker, A. R., Weller, J., Wester, W., Zuntz, J., & DES Collaboration). Blinding multiprobe cosmological experiments. United Kingdom. doi:https://doi.org/10.1093/mnras/staa965
Muir, J., Bernstein, G. M., Huterer, D., Elsner, F., Krause, E., Roodman, A., Allam, S., Annis, J., Avila, S., Bechtol, K., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Cawthon, R., Costanzi, M., da Costa, L. N., De Vicente, J., Desai, S., Dietrich, J. P., Doel, P., Eifler, T. F., Everett, S., Fosalba, P., Frieman, J., García-Bellido, J., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Hartley, W. G., Hollowood, D. L., James, D. J., Jarvis, M., Kuehn, K., Kuropatkin, N., Lahav, O., March, M., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Plazas, A. A., Romer, A. K., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Smith, M., Suchyta, E., Tarle, G., Thomas, D., Troxel, M. A., Walker, A. R., Weller, J., Wester, W., Zuntz, J., and DES Collaboration). Wed . "Blinding multiprobe cosmological experiments". United Kingdom. doi:https://doi.org/10.1093/mnras/staa965.
@article{osti_1617058,
title = {Blinding multiprobe cosmological experiments},
author = {Muir, J. and Bernstein, G. M. and Huterer, D. and Elsner, F. and Krause, E. and Roodman, A. and Allam, S. and Annis, J. and Avila, S. and Bechtol, K. and Bertin, E. and Brooks, D. and Buckley-Geer, E. and Burke, D. L. and Carnero Rosell, A. and Carrasco Kind, M. and Carretero, J. and Cawthon, R. and Costanzi, M. and da Costa, L. N. and De Vicente, J. and Desai, S. and Dietrich, J. P. and Doel, P. and Eifler, T. F. and Everett, S. and Fosalba, P. and Frieman, J. and García-Bellido, J. and Gerdes, D. W. and Gruen, D. and Gruendl, R. A. and Gschwend, J. and Hartley, W. G. and Hollowood, D. L. and James, D. J. and Jarvis, M. and Kuehn, K. and Kuropatkin, N. and Lahav, O. and March, M. and Marshall, J. L. and Melchior, P. and Menanteau, F. and Miquel, R. and Ogando, R. L. C. and Palmese, A. and Paz-Chinchón, F. and Plazas, A. A. and Romer, A. K. and Sanchez, E. and Scarpine, V. and Schubnell, M. and Serrano, S. and Sevilla-Noarbe, I. and Smith, M. and Suchyta, E. and Tarle, G. and Thomas, D. and Troxel, M. A. and Walker, A. R. and Weller, J. and Wester, W. and Zuntz, J. and DES Collaboration)},
abstractNote = {The goal of blinding is to hide an experiment’s critical results – here the inferred cosmological parameters – until all decisions affecting its analysis have been finalized. This is especially important in the current era of precision cosmology, when the results of any new experiment are closely scrutinized for consistency or tension with previous results. In analyses that combine multiple observational probes, like the combination of galaxy clustering and weak lensing in the Dark Energy Survey (DES), it is challenging to blind the results while retaining the ability to check for (in)consistency between different parts of the data. In this paper, we propose a simple new blinding transformation, which works by modifying the summary statistics that are input to parameter estimation, such as two-point correlation functions. The transformation shifts the measured statistics to new values that are consistent with (blindly) shifted cosmological parameters while preserving internal (in)consistency. We apply the blinding transformation to simulated data for the projected DES Year 3 galaxy clustering and weak lensing analysis, demonstrating that practical blinding is achieved without significant perturbation of internal-consistency checks, as measured here by degradation of the χ2 between the data and best-fitting model. Our blinding method’s performance is expected to improve as experiments evolve to higher precision and accuracy.},
doi = {10.1093/mnras/staa965},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 3,
volume = 494,
place = {United Kingdom},
year = {2020},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: https://doi.org/10.1093/mnras/staa965

Save / Share:

Works referenced in this record:

RCSLenS: testing gravitational physics through the cross-correlation of weak lensing and large-scale structure
journal, December 2015

  • Blake, Chris; Joudaki, Shahab; Heymans, Catherine
  • Monthly Notices of the Royal Astronomical Society, Vol. 456, Issue 3
  • DOI: 10.1093/mnras/stv2875

A blinding solution for inference from astronomical data
journal, January 2020

  • Sellentin, Elena
  • Monthly Notices of the Royal Astronomical Society, Vol. 492, Issue 3
  • DOI: 10.1093/mnras/staa043

CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey: CFHTLenS
journal, October 2012

  • Heymans, Catherine; Van Waerbeke, Ludovic; Miller, Lance
  • Monthly Notices of the Royal Astronomical Society, Vol. 427, Issue 1
  • DOI: 10.1111/j.1365-2966.2012.21952.x

Dependence of cosmic shear covariances on cosmology: Impact on parameter estimation
journal, June 2009


Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear
journal, August 2018


Efficient Computation of Cosmic Microwave Background Anisotropies in Closed Friedmann‐Robertson‐Walker Models
journal, August 2000

  • Lewis, Antony; Challinor, Anthony; Lasenby, Anthony
  • The Astrophysical Journal, Vol. 538, Issue 2
  • DOI: 10.1086/309179

Two Accurate Time-Delay Distances from Strong Lensing: Implications for Cosmology
journal, March 2013


CMB power spectrum parameter degeneracies in the era of precision cosmology
journal, April 2012

  • Howlett, Cullan; Lewis, Antony; Hall, Alex
  • Journal of Cosmology and Astroparticle Physics, Vol. 2012, Issue 04
  • DOI: 10.1088/1475-7516/2012/04/027

Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing
journal, August 2018


Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing
journal, August 2018


Blind Analysis in Nuclear and Particle Physics
journal, December 2005


Revising the Halofit Model for the Nonlinear Matter Power Spectrum
journal, December 2012

  • Takahashi, Ryuichi; Sato, Masanori; Nishimichi, Takahiro
  • The Astrophysical Journal, Vol. 761, Issue 2
  • DOI: 10.1088/0004-637X/761/2/152

Weighing the Giants – I. Weak-lensing masses for 51 massive galaxy clusters: project overview, data analysis methods and cluster images
journal, February 2014

  • von der Linden, Anja; Allen, Mark T.; Applegate, Douglas E.
  • Monthly Notices of the Royal Astronomical Society, Vol. 439, Issue 1
  • DOI: 10.1093/mnras/stt1945

H0LiCOW – I. H0 Lenses in COSMOGRAIL's Wellspring: program overview
journal, February 2017

  • Suyu, S. H.; Bonvin, V.; Courbin, F.
  • Monthly Notices of the Royal Astronomical Society, Vol. 468, Issue 3
  • DOI: 10.1093/mnras/stx483

Unity: Confronting Supernova Cosmology’S Statistical and Systematic Uncertainties in a Unified Bayesian Framework
journal, November 2015


X-ray properties of high-richness CAMIRA clusters in the Hyper Suprime-Cam Subaru Strategic Program field
journal, November 2019

  • Ota, Naomi; Mitsuishi, Ikuyuki; Babazaki, Yasunori
  • Publications of the Astronomical Society of Japan
  • DOI: 10.1093/pasj/psz118

Quantifying tensions in cosmological parameters: Interpreting the DES evidence ratio
journal, August 2019


A blinded determination of H0 from low-redshift Type Ia supernovae, calibrated by Cepheid variables
journal, June 2017

  • Zhang, Bonnie R.; Childress, Michael J.; Davis, Tamara M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 471, Issue 2
  • DOI: 10.1093/mnras/stx1600

Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology
journal, April 2018

  • Drlica-Wagner, A.; Sevilla-Noarbe, I.; Rykoff, E. S.
  • The Astrophysical Journal Supplement Series, Vol. 235, Issue 2
  • DOI: 10.3847/1538-4365/aab4f5

CosmoSIS: Modular cosmological parameter estimation
journal, September 2015


Dark Energy Survey Year 1 results: weak lensing shape catalogues
journal, August 2018

  • Zuntz, J.; Sheldon, E.; Samuroff, S.
  • Monthly Notices of the Royal Astronomical Society, Vol. 481, Issue 1
  • DOI: 10.1093/mnras/sty2219

Dark energy constraints from cosmic shear power spectra: impact of intrinsic alignments on photometric redshift requirements
journal, December 2007


Dark-energy constraints and correlations with systematics from CFHTLS weak lensing, SNLS supernovae Ia and WMAP5
journal, March 2009


KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing
journal, November 2016

  • Hildebrandt, H.; Viola, M.; Heymans, C.
  • Monthly Notices of the Royal Astronomical Society, Vol. 465, Issue 2
  • DOI: 10.1093/mnras/stw2805

Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets
journal, October 2008

  • Kowalski, M.; Rubin, D.; Aldering, G.
  • The Astrophysical Journal, Vol. 686, Issue 2
  • DOI: 10.1086/589937

cosmolike – cosmological likelihood analyses for photometric galaxy surveys
journal, May 2017

  • Krause, Elisabeth; Eifler, Tim
  • Monthly Notices of the Royal Astronomical Society, Vol. 470, Issue 2
  • DOI: 10.1093/mnras/stx1261

Gravitational lensing analysis of the Kilo-Degree Survey
journal, October 2015

  • Kuijken, Konrad; Heymans, Catherine; Hildebrandt, Hendrik
  • Monthly Notices of the Royal Astronomical Society, Vol. 454, Issue 4
  • DOI: 10.1093/mnras/stv2140

A Simplex Method for Function Minimization
journal, January 1965


Matplotlib: A 2D Graphics Environment
journal, January 2007


Dark Energy Survey year 1 results: Galaxy clustering for combined probes
journal, August 2018


First Cosmology Results using Type Ia Supernovae from the Dark Energy Survey: Constraints on Cosmological Parameters
journal, February 2019


MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics
journal, October 2009


Improved upper limit on the branching ratio B ( K L 0 μ ± e )
journal, February 1993


Analysis of two-point statistics of cosmic shear: III. Covariances of shear measures made easy
journal, November 2007


Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples
journal, August 2014