skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Practical challenges in the development of photoelectrochemical solar fuels production

Abstract

Here, we address the challenges presented by photoelectrochemical solar fuels technology in a discussion that begins with a functioning device and proceeds to the more fundamental science of its component parts. In this flow of discussion issues are addressed that frame the discussion for the next, increasingly more fundamental topic. The analysis begins with a discussion of the need for an analytical facility for confirmation of reported efficiencies of solar fuels device prototypes and then progressively narrows its scope to prototype design, the discovery of novel materials and the design of durable interfacial structures for fuels evolution. Molecular hydrogen will be considered first as the target fuel since many of the challenges with hydrogen production are general and applicable to the more complex CO2 reduction, which will be treated as a supplementary subject.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [7]; ORCiD logo [8];  [9];  [10];  [11]; ORCiD logo [12];  [13]; ORCiD logo [11]; ORCiD logo [14];  [15]
  1. Univ. of North Carolina, Chapel Hill, NC (United States)
  2. New York Univ. (NYU), NY (United States)
  3. National Renewable Energy Lab. (NREL), Golden, CO (United States). Chemistry and Nanoscience Center
  4. California Institute of Technology (CalTech), Pasadena, CA (United States)
  5. Imperial College London (United Kingdom); Univ. of Swansea (United Kingdom)
  6. Columbia Univ., New York, NY (United States)
  7. Inst. of Mechanical Engineering, Lausanne (Switzerland)
  8. Univ. of Michigan, Ann Arbor, MI (United States)
  9. Technical Univ. of Munich (Germany)
  10. Univ. of Wyoming, Laramie, WY (United States)
  11. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  12. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis
  13. Univ. of Ilmenau (Germany)
  14. Harvard Univ., Cambridge, MA (United States)
  15. Stanford Univ., CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); National Renewable Energy Lab. (NREL), Golden, CO (United States); Harvard Univ., Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES), Chemical Sciences, Geosciences & Biosciences Division; USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1616982
Alternate Identifier(s):
OSTI ID: 1579577; OSTI ID: 1606304; OSTI ID: 1775496
Report Number(s):
NREL/JA-5900-75059
Journal ID: ISSN 2398-4902; SEFUA7; ark:/13030/qt6tg7r712
Grant/Contract Number:  
AC02-05CH11231; AC36-08GO28308; SC0017619
Resource Type:
Accepted Manuscript
Journal Name:
Sustainable Energy & Fuels
Additional Journal Information:
Journal Volume: 4; Journal Issue: 3; Journal ID: ISSN 2398-4902
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; photoelectrochemical; solar fuels; molecular hydrogen; photoelectrochemical solar fuels; CO2 reduction; system prototyping; semiconductors and coating; 09 BIOMASS FUELS; 15 GEOTHERMAL ENERGY; 30 DIRECT ENERGY CONVERSION; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 47 OTHER INSTRUMENTATION; photoelectrochemical solar fuels, molecular hydrogen, CO2 reduction, system prototyping, semiconductors and coating

Citation Formats

Spitler, Mark T., Modestino, Miguel A., Deutsch, Todd G., Xiang, Chengxiang X., Durrant, James R., Esposito, Daniel V., Haussener, Sophia, Maldonado, Stephen, Sharp, Ian D., Parkinson, Bruce A., Ginley, David S., Houle, Frances A., Hannappel, Thomas, Neale, Nathan R., Nocera, Daniel G., and McIntyre, Paul C. Practical challenges in the development of photoelectrochemical solar fuels production. United States: N. p., 2019. Web. https://doi.org/10.1039/c9se00869a.
Spitler, Mark T., Modestino, Miguel A., Deutsch, Todd G., Xiang, Chengxiang X., Durrant, James R., Esposito, Daniel V., Haussener, Sophia, Maldonado, Stephen, Sharp, Ian D., Parkinson, Bruce A., Ginley, David S., Houle, Frances A., Hannappel, Thomas, Neale, Nathan R., Nocera, Daniel G., & McIntyre, Paul C. Practical challenges in the development of photoelectrochemical solar fuels production. United States. https://doi.org/10.1039/c9se00869a
Spitler, Mark T., Modestino, Miguel A., Deutsch, Todd G., Xiang, Chengxiang X., Durrant, James R., Esposito, Daniel V., Haussener, Sophia, Maldonado, Stephen, Sharp, Ian D., Parkinson, Bruce A., Ginley, David S., Houle, Frances A., Hannappel, Thomas, Neale, Nathan R., Nocera, Daniel G., and McIntyre, Paul C. Wed . "Practical challenges in the development of photoelectrochemical solar fuels production". United States. https://doi.org/10.1039/c9se00869a. https://www.osti.gov/servlets/purl/1616982.
@article{osti_1616982,
title = {Practical challenges in the development of photoelectrochemical solar fuels production},
author = {Spitler, Mark T. and Modestino, Miguel A. and Deutsch, Todd G. and Xiang, Chengxiang X. and Durrant, James R. and Esposito, Daniel V. and Haussener, Sophia and Maldonado, Stephen and Sharp, Ian D. and Parkinson, Bruce A. and Ginley, David S. and Houle, Frances A. and Hannappel, Thomas and Neale, Nathan R. and Nocera, Daniel G. and McIntyre, Paul C.},
abstractNote = {Here, we address the challenges presented by photoelectrochemical solar fuels technology in a discussion that begins with a functioning device and proceeds to the more fundamental science of its component parts. In this flow of discussion issues are addressed that frame the discussion for the next, increasingly more fundamental topic. The analysis begins with a discussion of the need for an analytical facility for confirmation of reported efficiencies of solar fuels device prototypes and then progressively narrows its scope to prototype design, the discovery of novel materials and the design of durable interfacial structures for fuels evolution. Molecular hydrogen will be considered first as the target fuel since many of the challenges with hydrogen production are general and applicable to the more complex CO2 reduction, which will be treated as a supplementary subject.},
doi = {10.1039/c9se00869a},
journal = {Sustainable Energy & Fuels},
number = 3,
volume = 4,
place = {United States},
year = {2019},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Printing-friendly sequential deposition via intra-additive approach for roll-to-roll process of perovskite solar cells
journal, November 2017


The role of semiconductor structure and surface properties in photoelectrochemical processes
journal, July 1983


Atomic Layer Deposited TiO 2 –IrO x Alloys Enable Corrosion Resistant Water Oxidation on Silicon at High Photovoltage
journal, November 2018


Electrochemical Photolysis of Water at a Semiconductor Electrode
journal, July 1972

  • Fujishima, Akira; Honda, Kenichi
  • Nature, Vol. 238, Issue 5358, p. 37-38
  • DOI: 10.1038/238037a0

A taxonomy for solar fuels generators
journal, January 2015

  • Nielander, Adam C.; Shaner, Matthew R.; Papadantonakis, Kimberly M.
  • Energy & Environmental Science, Vol. 8, Issue 1
  • DOI: 10.1039/C4EE02251C

High Throughput Discovery of Solar Fuels Photoanodes in the CuO-V 2 O 5 System
journal, August 2015

  • Zhou, Lan; Yan, Qimin; Shinde, Aniketa
  • Advanced Energy Materials, Vol. 5, Issue 22
  • DOI: 10.1002/aenm.201500968

Combinatorial Discovery and Optimization of a Complex Oxide with Water Photoelectrolysis Activity
journal, April 2008

  • Woodhouse, Michael; Parkinson, B. A.
  • Chemistry of Materials, Vol. 20, Issue 7
  • DOI: 10.1021/cm703099j

Silicon Photoelectrode Thermodynamics and Hydrogen Evolution Kinetics Measured by Intensity-Modulated High-Frequency Resistivity Impedance Spectroscopy
journal, October 2017

  • Anderson, Nicholas C.; Carroll, Gerard M.; Pekarek, Ryan T.
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 21
  • DOI: 10.1021/acs.jpclett.7b01311

Toward Practical Solar Hydrogen Production
journal, March 2018


A thermally synergistic photo-electrochemical hydrogen generator operating under concentrated solar irradiation
journal, April 2019


Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment
journal, March 2017

  • Yan, Qimin; Yu, Jie; Suram, Santosh K.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 12
  • DOI: 10.1073/pnas.1619940114

Design and cost considerations for practical solar-hydrogen generators
journal, January 2014

  • Rodriguez, Claudia A.; Modestino, Miguel A.; Psaltis, Demetri
  • Energy Environ. Sci., Vol. 7, Issue 12
  • DOI: 10.1039/C4EE01453G

Combined Catalysis and Optical Screening for High Throughput Discovery of Solar Fuels Catalysts
journal, April 2013


Solar-to-hydrogen efficiency: shining light on photoelectrochemical device performance
journal, January 2016

  • Döscher, H.; Young, J. L.; Geisz, J. F.
  • Energy & Environmental Science, Vol. 9, Issue 1
  • DOI: 10.1039/C5EE03206G

Modeling, Simulation, and Fabrication of a Fully Integrated, Acid-stable, Scalable Solar-Driven Water-Splitting System
journal, January 2015


Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation
journal, January 2015

  • Coridan, Robert H.; Nielander, Adam C.; Francis, Sonja A.
  • Energy & Environmental Science, Vol. 8, Issue 10
  • DOI: 10.1039/C5EE00777A

Design guidelines for concentrated photo-electrochemical water splitting devices based on energy and greenhouse gas yield ratios
journal, January 2015

  • Dumortier, Mikaël; Haussener, Sophia
  • Energy & Environmental Science, Vol. 8, Issue 11
  • DOI: 10.1039/C5EE01269D

Plasma and ion sources in large area coating: A review
journal, November 2005


Operational constraints and strategies for systems to effect the sustainable, solar-driven reduction of atmospheric CO 2
journal, January 2015

  • Chen, Yikai; Lewis, Nathan S.; Xiang, Chengxiang
  • Energy & Environmental Science, Vol. 8, Issue 12
  • DOI: 10.1039/C5EE02908B

Photoelectrochemistry: Applications to Solar Energy Conversion
journal, October 1978


Silicon protected with atomic layer deposited TiO2: durability studies of photocathodic H2 evolution
journal, January 2013

  • Seger, Brian; Tilley, David S.; Pedersen, Thomas
  • RSC Advances, Vol. 3, Issue 48
  • DOI: 10.1039/c3ra45966g

Chemical Stability of Titania and Alumina Thin Films Formed by Atomic Layer Deposition
journal, July 2015

  • Correa, Gabriela C.; Bao, Bo; Strandwitz, Nicholas C.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 27
  • DOI: 10.1021/acsami.5b03278

Photoelectrochemical production of hydrogen: Engineering loss analysis
journal, August 1997


Atomic layer deposition (ALD): from precursors to thin film structures
journal, April 2002


Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation
journal, June 2011

  • Chen, Yi Wei; Prange, Jonathan D.; Dühnen, Simon
  • Nature Materials, Vol. 10, Issue 7
  • DOI: 10.1038/nmat3047

Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation
journal, May 2014


Combinatorial Investigation and Modelling of MoO 3 Hole-Selective Contact in TiO 2 |Co 3 O 4 |MoO 3 All-Oxide Solar Cells
journal, October 2015

  • Majhi, Koushik; Bertoluzzi, Luca; Rietwyk, Kevin James
  • Advanced Materials Interfaces, Vol. 3, Issue 1
  • DOI: 10.1002/admi.201500405

Band offsets and optical bowings of chalcopyrites and Zn‐based II‐VI alloys
journal, September 1995

  • Wei, Su‐Huai; Zunger, Alex
  • Journal of Applied Physics, Vol. 78, Issue 6
  • DOI: 10.1063/1.359901

Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry
journal, January 2013

  • Pinaud, Blaise A.; Benck, Jesse D.; Seitz, Linsey C.
  • Energy & Environmental Science, Vol. 6, Issue 7
  • DOI: 10.1039/c3ee40831k

Solar cell efficiency tables (Version 53)
journal, December 2018

  • Green, Martin A.; Hishikawa, Yoshihiro; Dunlop, Ewan D.
  • Progress in Photovoltaics: Research and Applications, Vol. 27, Issue 1
  • DOI: 10.1002/pip.3102

Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems
journal, January 2012

  • Haussener, Sophia; Xiang, Chengxiang; Spurgeon, Joshua M.
  • Energy & Environmental Science, Vol. 5, Issue 12
  • DOI: 10.1039/c2ee23187e

Bi-Containing n-FeWO 4 Thin Films Provide the Largest Photovoltage and Highest Stability for a Sub-2 eV Band Gap Photoanode
journal, October 2018


Efficiency of solar water splitting using semiconductor electrodes
journal, November 2006


Particle suspension reactors and materials for solar-driven water splitting
journal, January 2015

  • Fabian, David M.; Hu, Shu; Singh, Nirala
  • Energy & Environmental Science, Vol. 8, Issue 10
  • DOI: 10.1039/C5EE01434D

Composition-Dependent Functionality of Copper Vanadate Photoanodes
journal, February 2018

  • Jiang, Chang-Ming; Segev, Gideon; Hess, Lucas H.
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 13
  • DOI: 10.1021/acsami.8b02977

On the stability of semiconductor electrodes against photodecomposition
journal, September 1977


Large-area photoelectrochemical water splitting using a multi-photoelectrode approach
journal, September 2018


Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems
journal, January 2013

  • Haussener, Sophia; Hu, Shu; Xiang, Chengxiang
  • Energy & Environmental Science, Vol. 6, Issue 12
  • DOI: 10.1039/c3ee41302k

Review of plasma-enhanced atomic layer deposition: Technical enabler of nanoscale device fabrication
journal, January 2014

  • Kim, Hyungjun; Oh, Il-Kwon
  • Japanese Journal of Applied Physics, Vol. 53, Issue 3S2
  • DOI: 10.7567/JJAP.53.03DA01

A Particulate Photocatalyst Water-Splitting Panel for Large-Scale Solar Hydrogen Generation
journal, March 2018


Synthesis of highly active rhodium-doped SrTiO3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting
journal, January 2013

  • Kato, Hideki; Sasaki, Yasuyoshi; Shirakura, Nana
  • Journal of Materials Chemistry A, Vol. 1, Issue 39
  • DOI: 10.1039/c3ta12803b

Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere
journal, January 2012

  • Goeppert, Alain; Czaun, Miklos; Surya Prakash, G. K.
  • Energy & Environmental Science, Vol. 5, Issue 7
  • DOI: 10.1039/c2ee21586a

Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices
journal, October 2016

  • Xiang, Chengxiang; Weber, Adam Z.; Ardo, Shane
  • Angewandte Chemie International Edition, Vol. 55, Issue 42
  • DOI: 10.1002/anie.201510463

Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators
journal, October 2015

  • Hu, Shu; Lewis, Nathan S.; Ager, Joel W.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 43
  • DOI: 10.1021/acs.jpcc.5b05976

Thin Film Synthesis by Energetic Condensation
journal, August 2001


Vapor-Deposited Perovskites: The Route to High-Performance Solar Cell Production?
journal, November 2017


Will Solar-Driven Water-Splitting Devices See the Light of Day?
journal, September 2013

  • McKone, James R.; Lewis, Nathan S.; Gray, Harry B.
  • Chemistry of Materials, Vol. 26, Issue 1
  • DOI: 10.1021/cm4021518

Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols
journal, January 2010

  • Chen, Zhebo; Jaramillo, Thomas F.; Deutsch, Todd G.
  • Journal of Materials Research, Vol. 25, Issue 1
  • DOI: 10.1557/JMR.2010.0020

Fe–Cr–Al Containing Oxide Semiconductors as Potential Solar Water-Splitting Materials
journal, February 2015

  • Sliozberg, Kirill; Stein, Helge S.; Khare, Chinmay
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 8
  • DOI: 10.1021/am508946e

Efficiency limits for photoelectrochemical water-splitting
journal, December 2016

  • Fountaine, Katherine T.; Lewerenz, Hans Joachim; Atwater, Harry A.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13706

A comparative technoeconomic analysis of renewable hydrogen production using solar energy
journal, January 2016

  • Shaner, Matthew R.; Atwater, Harry A.; Lewis, Nathan S.
  • Energy & Environmental Science, Vol. 9, Issue 7
  • DOI: 10.1039/C5EE02573G

Inkjet Printing-Process and Its Applications
journal, February 2010

  • Singh, Madhusudan; Haverinen, Hanna M.; Dhagat, Parul
  • Advanced Materials, Vol. 22, Issue 6
  • DOI: 10.1002/adma.200901141

Atomic Layer Deposition: An Overview
journal, January 2010

  • George, Steven M.
  • Chemical Reviews, Vol. 110, Issue 1, p. 111-131
  • DOI: 10.1021/cr900056b

Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting
journal, January 2015

  • Ager, Joel W.; Shaner, Matthew R.; Walczak, Karl A.
  • Energy & Environmental Science, Vol. 8, Issue 10
  • DOI: 10.1039/C5EE00457H

The 2019 materials by design roadmap
journal, October 2018

  • Alberi, Kirstin; Nardelli, Marco Buongiorno; Zakutayev, Andriy
  • Journal of Physics D: Applied Physics, Vol. 52, Issue 1
  • DOI: 10.1088/1361-6463/aad926

Artificial photosynthesis as a frontier technology for energy sustainability
journal, January 2013

  • Faunce, Thomas; Styring, Stenbjorn; Wasielewski, Michael R.
  • Energy & Environmental Science, Vol. 6, Issue 4
  • DOI: 10.1039/c3ee40534f

Molecular precursor approach to metal oxide and pnictide thin films
journal, December 2013


High-Throughput Computational Assessment of Previously Synthesized Semiconductors for Photovoltaic and Photoelectrochemical Devices
journal, January 2018


Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures
journal, March 2017

  • Young, James L.; Steiner, Myles A.; Döscher, Henning
  • Nature Energy, Vol. 2, Issue 4
  • DOI: 10.1038/nenergy.2017.28

Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends
journal, January 2013

  • Miikkulainen, Ville; Leskelä, Markku; Ritala, Mikko
  • Journal of Applied Physics, Vol. 113, Issue 2, Article No. 021301
  • DOI: 10.1063/1.4757907

An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems
journal, January 2013

  • Hu, Shu; Xiang, Chengxiang; Haussener, Sophia
  • Energy & Environmental Science, Vol. 6, Issue 10
  • DOI: 10.1039/c3ee40453f

A brief review of atomic layer deposition: from fundamentals to applications
journal, June 2014


Water splitting–biosynthetic system with CO 2 reduction efficiencies exceeding photosynthesis
journal, June 2016


Monolithic Photoelectrochemical Device for Direct Water Splitting with 19% Efficiency
journal, June 2018


Combined Catalysis and Optical Screening for High Throughput Discovery of Solar Fuels Catalysts
journal, January 2013

  • Gregoire, J. M.; Xiang, C.; Mitrovic, S.
  • Journal of The Electrochemical Society, Vol. 160, Issue 4
  • DOI: 10.1149/2.035304jes

Sunlight absorption in water – efficiency and design implications for photoelectrochemical devices
journal, January 2014

  • Döscher, H.; Geisz, J. F.; Deutsch, T. G.
  • Energy Environ. Sci., Vol. 7, Issue 9
  • DOI: 10.1039/C4EE01753F

Monolithic cells for solar fuels
journal, January 2014

  • Rongé, Jan; Bosserez, Tom; Martel, David
  • Chem. Soc. Rev., Vol. 43, Issue 23
  • DOI: 10.1039/C3CS60424A

Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge
journal, January 2019

  • Kim, Jin Hyun; Hansora, Dharmesh; Sharma, Pankaj
  • Chemical Society Reviews, Vol. 48, Issue 7
  • DOI: 10.1039/C8CS00699G

Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis
journal, January 2009

  • Woodhouse, Michael; Parkinson, B. A.
  • Chem. Soc. Rev., Vol. 38, Issue 1
  • DOI: 10.1039/B719545C

Low-Cost Inorganic Solar Cells: From Ink To Printed Device
journal, November 2010

  • Habas, Susan E.; Platt, Heather A. S.; van Hest, Maikel F. A. M.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6571-6594
  • DOI: 10.1021/cr100191d