DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Atomic layer deposition of cubic tin–calcium sulfide alloy films

Abstract

Here, we deposit films of tin–calcium sulfide by atomic layer deposition (ALD) and demonstrate the metastability of this material. Rough and spiky films are obtained by using Sn and Ca precursors with different ligands, whereas compact and smooth films are obtained when the two metal sources share the same ligands. Compositional and quartz crystal microbalance results indicate that part of the underlaying SnS film is replaced and/or removed during the CaS ALD cycle during the ternary film deposition, possibly via a temperature-dependent cation exchange mechanism. The crystal structure transforms from orthorhombic to cubic as the calcium content increases. Furthermore, resistivity increases with calcium content in the alloy films, whereas optical band gap only depends weakly on Ca content. After annealing at 400 °C in an H2S environment, the cubic alloy film undergoes a phase transition into the orthorhombic phase and its resistivity also decreases. Both phenomena could be explained by phase separation of the metastable alloy.

Authors:
ORCiD logo [1];  [1];  [1];  [2];  [1];  [1]
  1. Harvard Univ., Cambridge, MA (United States)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Next Generation of Materials by Design: Incorporating Metastability (CNGMD); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1616742
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Materials Research
Additional Journal Information:
Journal Volume: 35; Journal Issue: 7; Journal ID: ISSN 0884-2914
Publisher:
Materials Research Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Yang, Chuanxi, Zhao, Xizhu, Kim, Sang Bok, Schelhas, Laura T., Lou, Xiabing, and G. Gordon, Roy. Atomic layer deposition of cubic tin–calcium sulfide alloy films. United States: N. p., 2019. Web. doi:10.1557/jmr.2019.337.
Yang, Chuanxi, Zhao, Xizhu, Kim, Sang Bok, Schelhas, Laura T., Lou, Xiabing, & G. Gordon, Roy. Atomic layer deposition of cubic tin–calcium sulfide alloy films. United States. https://doi.org/10.1557/jmr.2019.337
Yang, Chuanxi, Zhao, Xizhu, Kim, Sang Bok, Schelhas, Laura T., Lou, Xiabing, and G. Gordon, Roy. Fri . "Atomic layer deposition of cubic tin–calcium sulfide alloy films". United States. https://doi.org/10.1557/jmr.2019.337. https://www.osti.gov/servlets/purl/1616742.
@article{osti_1616742,
title = {Atomic layer deposition of cubic tin–calcium sulfide alloy films},
author = {Yang, Chuanxi and Zhao, Xizhu and Kim, Sang Bok and Schelhas, Laura T. and Lou, Xiabing and G. Gordon, Roy},
abstractNote = {Here, we deposit films of tin–calcium sulfide by atomic layer deposition (ALD) and demonstrate the metastability of this material. Rough and spiky films are obtained by using Sn and Ca precursors with different ligands, whereas compact and smooth films are obtained when the two metal sources share the same ligands. Compositional and quartz crystal microbalance results indicate that part of the underlaying SnS film is replaced and/or removed during the CaS ALD cycle during the ternary film deposition, possibly via a temperature-dependent cation exchange mechanism. The crystal structure transforms from orthorhombic to cubic as the calcium content increases. Furthermore, resistivity increases with calcium content in the alloy films, whereas optical band gap only depends weakly on Ca content. After annealing at 400 °C in an H2S environment, the cubic alloy film undergoes a phase transition into the orthorhombic phase and its resistivity also decreases. Both phenomena could be explained by phase separation of the metastable alloy.},
doi = {10.1557/jmr.2019.337},
journal = {Journal of Materials Research},
number = 7,
volume = 35,
place = {United States},
year = {2019},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Chemically deposited cubic SnS thin films for solar cell applications
journal, December 2016


Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS
journal, January 2012

  • Vidal, Julien; Lany, Stephan; d’Avezac, Mayeul
  • Applied Physics Letters, Vol. 100, Issue 3
  • DOI: 10.1063/1.3675880

Thermally evaporated thin films of SnS for application in solar cell devices
journal, July 2009

  • Miles, Robert W.; Ogah, Ogah E.; Zoppi, Guillaume
  • Thin Solid Films, Vol. 517, Issue 17, p. 4702-4705
  • DOI: 10.1016/j.tsf.2009.03.003

Structural and electronic modification of photovoltaic SnS by alloying
journal, March 2014

  • Vidal, Julien; Lany, Stephan; Francis, Jason
  • Journal of Applied Physics, Vol. 115, Issue 11
  • DOI: 10.1063/1.4868974

Deposition of SnS Thin Films from Sn(II) Thioamidate Precursors
journal, September 2017

  • Catherall, Amanda L.; Harris, Shasa; Hill, Michael S.
  • Crystal Growth & Design, Vol. 17, Issue 10
  • DOI: 10.1021/acs.cgd.7b01100

The effect of growth parameters on the deposition of CaS thin films by atomic layer epitaxy
journal, December 1994


Synthesis of SnS Thin Films by Atomic Layer Deposition at Low Temperatures
journal, September 2017


Using heterostructural alloying to tune the structure and properties of the thermoelectric Sn 1−x Ca x Se
journal, January 2017

  • Matthews, Bethany E.; Holder, Aaron M.; Schelhas, Laura T.
  • Journal of Materials Chemistry A, Vol. 5, Issue 32
  • DOI: 10.1039/C7TA03694A

Photovoltaic properties of SnS based solar cells
journal, November 2006

  • Ramakrishna Reddy, K. T.; Koteswara Reddy, N.; Miles, R. W.
  • Solar Energy Materials and Solar Cells, Vol. 90, Issue 18-19, p. 3041-3046
  • DOI: 10.1016/j.solmat.2006.06.012

Phase Stability of the Earth-Abundant Tin Sulfides SnS, SnS 2 , and Sn 2 S 3
journal, November 2012

  • Burton, Lee A.; Walsh, Aron
  • The Journal of Physical Chemistry C, Vol. 116, Issue 45
  • DOI: 10.1021/jp309154s

Synthesis of Calcium(II) Amidinate Precursors for Atomic Layer Deposition through a Redox Reaction between Calcium and Amidines
journal, June 2016

  • Kim, Sang Bok; Yang, Chuanxi; Powers, Tamara
  • Angewandte Chemie, Vol. 128, Issue 35
  • DOI: 10.1002/ange.201602406

Preparation and properties of zinc blende and orthorhombic SnS films by chemical bath deposition
journal, May 2011


Co-optimization of SnS absorber and Zn(O,S) buffer materials for improved solar cells: SnS absorber and Zn(O,S) buffer materials for improved solar cells
journal, May 2014

  • Park, Helen Hejin; Heasley, Rachel; Sun, Leizhi
  • Progress in Photovoltaics: Research and Applications, Vol. 23, Issue 7
  • DOI: 10.1002/pip.2504

Facile Bulk Synthesis of π-Cubic SnS
journal, September 2017


Growth characteristics, material properties, and optical properties of zinc oxysulfide films deposited by atomic layer deposition
journal, January 2012

  • Bakke, Jonathan R.; Tanskanen, Jukka T.; Hägglund, Carl
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 30, Issue 1
  • DOI: 10.1116/1.3664758

New Nanocrystalline Materials: A Previously Unknown Simple Cubic Phase in the SnS Binary System
journal, February 2015


Polymorphic Tin Sulfide Thin Films of Zinc Blende and Orthorhombic Structures by Chemical Deposition
journal, January 2008

  • Avellaneda, David; Nair, M. T. S.; Nair, P. K.
  • Journal of The Electrochemical Society, Vol. 155, Issue 7
  • DOI: 10.1149/1.2917198

Optoelectronic properties of single-layer, double-layer, and bulk tin sulfide: A theoretical study
journal, June 2013

  • Tritsaris, Georgios A.; Malone, Brad D.; Kaxiras, Efthimios
  • Journal of Applied Physics, Vol. 113, Issue 23
  • DOI: 10.1063/1.4811455

Atomic Layer Deposition of Cubic and Orthorhombic Phase Tin Monosulfide
journal, March 2017


Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions
journal, October 2017


Suppression of interference fringes in absorption measurements on thin films
journal, April 1986


Novel phase diagram behavior and materials design in heterostructural semiconductor alloys
journal, June 2017

  • Holder, Aaron M.; Siol, Sebastian; Ndione, Paul F.
  • Science Advances, Vol. 3, Issue 6
  • DOI: 10.1126/sciadv.1700270

Overcoming Efficiency Limitations of SnS-Based Solar Cells
journal, June 2014

  • Sinsermsuksakul, Prasert; Sun, Leizhi; Lee, Sang Woon
  • Advanced Energy Materials, Vol. 4, Issue 15
  • DOI: 10.1002/aenm.201400496

Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer
journal, February 2013

  • Sinsermsuksakul, Prasert; Hartman, Katy; Bok Kim, Sang
  • Applied Physics Letters, Vol. 102, Issue 5
  • DOI: 10.1063/1.4789855

Atomic Layer Deposition: An Overview
journal, January 2010

  • George, Steven M.
  • Chemical Reviews, Vol. 110, Issue 1, p. 111-131
  • DOI: 10.1021/cr900056b

Atomic Layer Deposition of Tin Monosulfide Thin Films
journal, September 2011

  • Sinsermsuksakul, Prasert; Heo, Jaeyeong; Noh, Wontae
  • Advanced Energy Materials, Vol. 1, Issue 6, p. 1116-1125
  • DOI: 10.1002/aenm.201100330

Synthesis and properties of nanocrystalline π-SnS – a new cubic phase of tin sulphide
journal, January 2016

  • Abutbul, R. E.; Segev, E.; Zeiri, L.
  • RSC Advances, Vol. 6, Issue 7
  • DOI: 10.1039/C5RA23092F

Polymorphism in some Iv‐Vi Compounds Induced by high Pressure and Thin‐Film Epitaxial Growth
journal, May 1967

  • Mariano, A. N.; Chopra, K. L.
  • Applied Physics Letters, Vol. 10, Issue 10
  • DOI: 10.1063/1.1754812

[Ca(Thd) 2 (Tetraen)]:  A Monomeric Precursor for Deposition of CaS Thin Films
journal, May 1997

  • Hänninen, Timo; Mutikainen, Ilpo; Saanila, Ville
  • Chemistry of Materials, Vol. 9, Issue 5
  • DOI: 10.1021/cm9606078

Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends
journal, January 2013

  • Miikkulainen, Ville; Leskelä, Markku; Ritala, Mikko
  • Journal of Applied Physics, Vol. 113, Issue 2, Article No. 021301
  • DOI: 10.1063/1.4757907

Crystal structure of a large cubic tin monosulfide polymorph: an unraveled puzzle
journal, January 2016

  • Abutbul, R. E.; Garcia-Angelmo, A. R.; Burshtein, Z.
  • CrystEngComm, Vol. 18, Issue 27
  • DOI: 10.1039/C6CE00647G

Epitaxial Growth of Mg x Ca 1– x O on GaN by Atomic Layer Deposition
journal, December 2016


A brief review of atomic layer deposition: from fundamentals to applications
journal, June 2014


Investigations on SnS
journal, October 1961

  • Albers, W.; Haas, C.; Vink, H. J.
  • Journal of Applied Physics, Vol. 32, Issue 10
  • DOI: 10.1063/1.1777047

Thin film solar cell of SnS absorber with cubic crystalline structure: Thin film solar cell of SnS absorber with cubic crystalline structure
journal, July 2015

  • Garcia-Angelmo, A. R.; Romano-Trujillo, R.; Campos-Álvarez, J.
  • physica status solidi (a), Vol. 212, Issue 10
  • DOI: 10.1002/pssa.201532405

Ion Exchange in Ultrathin Films of Cu 2 S and ZnS under Atomic Layer Deposition Conditions
journal, October 2011

  • Thimsen, Elijah; Peng, Qing; Martinson, Alex B. F.
  • Chemistry of Materials, Vol. 23, Issue 20
  • DOI: 10.1021/cm201412p

Synthesis of Calcium(II) Amidinate Precursors for Atomic Layer Deposition through a Redox Reaction between Calcium and Amidines
journal, June 2016

  • Kim, Sang Bok; Yang, Chuanxi; Powers, Tamara
  • Angewandte Chemie International Edition, Vol. 55, Issue 35
  • DOI: 10.1002/anie.201602406