DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Catalytic Hydrogenation of a Manganese(V) Nitride to Ammonia

Abstract

The catalytic hydrogenation of a metal nitride to make free ammonia using a rhodium hydride catalyst that promotes H2 activation and hydrogen atom transfer is described. The phenylimine-substituted rhodium complex, (η5-C5Me5)Rh(MePhI)H (MePhI = N-methyl-1-phenylethan-1-imine) exhibited higher thermal stability compared to the previously reported (η5-C5Me5)Rh(ppy)H (ppy = 2-phenylpyridine). DFT calculations established that the two rhodium complexes have comparable Rh–H bond dissociation free energies of 51.8 kcal mol-1 for (η5-C5Me5)Rh(MePhI)H and 51.1 kcal mol-1 for (η5-C5Me5)Rh(ppy)H. In the presence of 10 mol% of the phe-nylimine rhodium precatalyst and 4 atm of H2 in THF, the manganese nitride, (tBuSalen)Mn≡N underwent hydrogenation to liberate free ammonia with up to 6 total turnovers of NH3 or 18 turnovers of H·. The phenylpyridine analogue proved inactive for ammonia synthesis under identical conditions owing to competing deleterious hydride transfer chemistry. Subsequent research showed that the use of a non-polar solvent such as benzene suppressed formation of the cationic rhodium product resulting from the hydride transfer and enabled catalytic ammonia synthesis by proton coupled electron transfer.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Princeton Univ., NJ (United States). Frick Lab.
Publication Date:
Research Org.:
Princeton Univ., NJ (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1616530
Grant/Contract Number:  
SC0006498
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 142; Journal Issue: 20; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Kim, Sangmin, Zhong, Hongyu, Park, Yoonsu, Loose, Florian, and Chirik, Paul J. Catalytic Hydrogenation of a Manganese(V) Nitride to Ammonia. United States: N. p., 2020. Web. doi:10.1021/jacs.0c03346.
Kim, Sangmin, Zhong, Hongyu, Park, Yoonsu, Loose, Florian, & Chirik, Paul J. Catalytic Hydrogenation of a Manganese(V) Nitride to Ammonia. United States. https://doi.org/10.1021/jacs.0c03346
Kim, Sangmin, Zhong, Hongyu, Park, Yoonsu, Loose, Florian, and Chirik, Paul J. Mon . "Catalytic Hydrogenation of a Manganese(V) Nitride to Ammonia". United States. https://doi.org/10.1021/jacs.0c03346. https://www.osti.gov/servlets/purl/1616530.
@article{osti_1616530,
title = {Catalytic Hydrogenation of a Manganese(V) Nitride to Ammonia},
author = {Kim, Sangmin and Zhong, Hongyu and Park, Yoonsu and Loose, Florian and Chirik, Paul J.},
abstractNote = {The catalytic hydrogenation of a metal nitride to make free ammonia using a rhodium hydride catalyst that promotes H2 activation and hydrogen atom transfer is described. The phenylimine-substituted rhodium complex, (η5-C5Me5)Rh(MePhI)H (MePhI = N-methyl-1-phenylethan-1-imine) exhibited higher thermal stability compared to the previously reported (η5-C5Me5)Rh(ppy)H (ppy = 2-phenylpyridine). DFT calculations established that the two rhodium complexes have comparable Rh–H bond dissociation free energies of 51.8 kcal mol-1 for (η5-C5Me5)Rh(MePhI)H and 51.1 kcal mol-1 for (η5-C5Me5)Rh(ppy)H. In the presence of 10 mol% of the phe-nylimine rhodium precatalyst and 4 atm of H2 in THF, the manganese nitride, (tBuSalen)Mn≡N underwent hydrogenation to liberate free ammonia with up to 6 total turnovers of NH3 or 18 turnovers of H·. The phenylpyridine analogue proved inactive for ammonia synthesis under identical conditions owing to competing deleterious hydride transfer chemistry. Subsequent research showed that the use of a non-polar solvent such as benzene suppressed formation of the cationic rhodium product resulting from the hydride transfer and enabled catalytic ammonia synthesis by proton coupled electron transfer.},
doi = {10.1021/jacs.0c03346},
journal = {Journal of the American Chemical Society},
number = 20,
volume = 142,
place = {United States},
year = {Mon Apr 27 00:00:00 EDT 2020},
month = {Mon Apr 27 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Dinitrogen Coordination Chemistry:  On the Biomimetic Borderlands
journal, February 2004

  • MacKay, Bruce A.; Fryzuk, Michael D.
  • Chemical Reviews, Vol. 104, Issue 2
  • DOI: 10.1021/cr020610c

Dinitrogen fixation and activation after 30 years: a puzzle still unsolved
journal, September 1995


Über die Bildung von Ammoniak aus den Elementen
journal, October 1905


Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center
journal, July 2003


Interplay between Theory and Experiment for Ammonia Synthesis Catalyzed by Transition Metal Complexes
journal, April 2016

  • Tanaka, Hiromasa; Nishibayashi, Yoshiaki; Yoshizawa, Kazunari
  • Accounts of Chemical Research, Vol. 49, Issue 5
  • DOI: 10.1021/acs.accounts.6b00033

Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron
journal, May 2013

  • MacLeod, K. Cory; Holland, Patrick L.
  • Nature Chemistry, Vol. 5, Issue 7
  • DOI: 10.1038/nchem.1620

A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia
journal, December 2010

  • Arashiba, Kazuya; Miyake, Yoshihiro; Nishibayashi, Yoshiaki
  • Nature Chemistry, Vol. 3, Issue 2
  • DOI: 10.1038/nchem.906

Unique behaviour of dinitrogen-bridged dimolybdenum complexes bearing pincer ligand towards catalytic formation of ammonia
journal, April 2014

  • Tanaka, Hiromasa; Arashiba, Kazuya; Kuriyama, Shogo
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4737

Catalytic transformation of dinitrogen into ammonia and hydrazine by iron-dinitrogen complexes bearing pincer ligand
journal, July 2016

  • Kuriyama, Shogo; Arashiba, Kazuya; Nakajima, Kazunari
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12181

Remarkable catalytic activity of dinitrogen-bridged dimolybdenum complexes bearing NHC-based PCP-pincer ligands toward nitrogen fixation
journal, April 2017

  • Eizawa, Aya; Arashiba, Kazuya; Tanaka, Hiromasa
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14874

Catalytic conversion of nitrogen to ammonia by an iron model complex
journal, September 2013

  • Anderson, John S.; Rittle, Jonathan; Peters, Jonas C.
  • Nature, Vol. 501, Issue 7465
  • DOI: 10.1038/nature12435

Ammonia Synthesis by Hydrogenolysis of Titanium–Nitrogen Bonds Using Proton Coupled Electron Transfer
journal, March 2015

  • Pappas, Iraklis; Chirik, Paul J.
  • Journal of the American Chemical Society, Vol. 137, Issue 10
  • DOI: 10.1021/jacs.5b01047

A fresh approach to synthesizing ammonia from air and water
journal, April 2019


Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water
journal, April 2019


Dinitrogen Reduction to Ammonium at Rhenium Utilizing Light and Proton-Coupled Electron Transfer
journal, November 2019

  • Bruch, Quinton J.; Connor, Gannon P.; Chen, Chun-Hsing
  • Journal of the American Chemical Society, Vol. 141, Issue 51
  • DOI: 10.1021/jacs.9b10031

N–H Bond Formation in a Manganese(V) Nitride Yields Ammonia by Light-Driven Proton-Coupled Electron Transfer
journal, February 2019

  • Wang, Dian; Loose, Florian; Chirik, Paul J.
  • Journal of the American Chemical Society, Vol. 141, Issue 12
  • DOI: 10.1021/jacs.8b12957

Formation of Ammonia from an Iron Nitrido Complex
journal, April 2009

  • Scepaniak, Jeremiah J.; Young, Jessica A.; Bontchev, Ranko P.
  • Angewandte Chemie International Edition, Vol. 48, Issue 17
  • DOI: 10.1002/anie.200900381

Synthesis, Electrochemistry, and Reactivity of New Iridium(III) and Rhodium(III) Hydrides
journal, June 2012

  • Hu, Yue; Li, Ling; Shaw, Anthony P.
  • Organometallics, Vol. 31, Issue 14
  • DOI: 10.1021/om300398r

Kinetics and Thermodynamics of H /H•/H + Transfer from a Rhodium(III) Hydride
journal, April 2014

  • Hu, Yue; Norton, Jack R.
  • Journal of the American Chemical Society, Vol. 136, Issue 16
  • DOI: 10.1021/ja412309j

Pyridine(diimine) Chelate Hydrogenation in a Molybdenum Nitrido Ethylene Complex
journal, April 2019


Photolytic N 2 Splitting: A Road to Sustainable NH 3 Production?
journal, November 2014

  • Rebreyend, Christophe; de Bruin, Bas
  • Angewandte Chemie International Edition, Vol. 54, Issue 1
  • DOI: 10.1002/anie.201409727

Conversion of Dinitrogen into Acetonitrile under Ambient Conditions
journal, March 2016

  • Klopsch, Isabel; Kinauer, Markus; Finger, Markus
  • Angewandte Chemie International Edition, Vol. 55, Issue 15
  • DOI: 10.1002/anie.201600790

Expanding Boundaries: N 2 Cleavage and Functionalization beyond Early Transition Metals
journal, June 2016

  • Bezdek, Máté J.; Chirik, Paul J.
  • Angewandte Chemie International Edition, Vol. 55, Issue 28
  • DOI: 10.1002/anie.201603142

Hydrogenation of N -Heteroarenes Using Rhodium Precatalysts: Reductive Elimination Leads to Formation of Multimetallic Clusters
journal, October 2019

  • Kim, Sangmin; Loose, Florian; Bezdek, Máté J.
  • Journal of the American Chemical Society, Vol. 141, Issue 44
  • DOI: 10.1021/jacs.9b09540

Dicarbonylrhodium(I) Complexes of Bipyridine Ligands with Proximate H-Bonding Substituents and Their Application in Methyl Acetate Carbonylation
journal, July 2011

  • Conifer, Christopher M.; Law, David J.; Sunley, Glenn J.
  • European Journal of Inorganic Chemistry, Vol. 2011, Issue 23
  • DOI: 10.1002/ejic.201100423

Carbonyl rhodium(I) complexes with α-diimines ligands
journal, January 1984


Transition metal-hydrogen and metal-carbon bond strengths: the keys to catalysis
journal, June 1990

  • Simoes, J. A. Martinho; Beauchamp, J. L.
  • Chemical Reviews, Vol. 90, Issue 4
  • DOI: 10.1021/cr00102a004

On the Basicity of Organic Bases in Different Media: On the Basicity of Organic Bases in Different Media
journal, September 2019

  • Tshepelevitsh, Sofja; Kütt, Agnes; Lõkov, Märt
  • European Journal of Organic Chemistry, Vol. 2019, Issue 40
  • DOI: 10.1002/ejoc.201900956

Thermochemistry of Proton-Coupled Electron Transfer Reagents and its Implications
journal, December 2010

  • Warren, Jeffrey J.; Tronic, Tristan A.; Mayer, James M.
  • Chemical Reviews, Vol. 110, Issue 12
  • DOI: 10.1021/cr100085k

Tuning Electronic Structure To Control Manganese Nitride Activation
journal, November 2016

  • Clarke, Ryan M.; Storr, Tim
  • Journal of the American Chemical Society, Vol. 138, Issue 47
  • DOI: 10.1021/jacs.6b09576

Facile Nucleophilic Addition to Salophen Coordinated to Nitridoosmium(VI)
journal, November 2001

  • Chiu, Sze-Man; Wong, Tsz-Wing; Man, Wai-Lun
  • Journal of the American Chemical Society, Vol. 123, Issue 50
  • DOI: 10.1021/ja011152c

Construction of Pseudo-Heterochiral and Homochiral Di-μ-oxotitanium(Schiff base) Dimers and Enantioselective Epoxidation Using Aqueous Hydrogen Peroxide
journal, August 2005

  • Matsumoto, Kazuhiro; Sawada, Yuji; Saito, Bunnai
  • Angewandte Chemie International Edition, Vol. 44, Issue 31
  • DOI: 10.1002/anie.200501318

An Efficient Method for the Preparation of Oxo Molybdenum Salalen Complexes and Their Unusual Use as Hydrosilylation Catalysts
journal, October 2009

  • Ziegler, Jeanette E.; Du, Guodong; Fanwick, Philip E.
  • Inorganic Chemistry, Vol. 48, Issue 23
  • DOI: 10.1021/ic901794h

Syntheses, structures and electrochemical properties of ruthenium(II/III) complexes with tetradentate Schiff base ligands
journal, February 2019