skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electroanalytical Investigation of the Electrode–Electrolyte Interface of Quaternary Ammonium Ionic Liquids: Impact of Alkyl Chain Length and Ether Functionality

Abstract

The influence of ionic associations and potential-dependent interactions on the electrode–electrolyte interfacial structure of ionic liquids (ILs) is studied by electrochemical impedance spectroscopy (EIS) and surface-enhanced Raman spectroscopy (SERS) for a variety of asymmetric quaternary ammonium ILs. Specifically, the impact of cation alkyl chain length (C = 4, 8 and 16) and ether functionality on the interfacial structuring of ILs at the glassy carbon electrode surface is examined. Ammonium cations with alkyl chain length of 8 and 16 carbons are found to stabilize the formation of the bis(trifluorosulfonyl)imide, [TFSI], anion dense Stern layer at positive electrode potentials leading to larger capacitances. The longer alkyl chain of the cation is believed to screen the ion–ion repulsion among the anions by intruding into the interfacial anion layer. SERS suggests the presence of carbon-containing rings at the interface at both positive and negative electrode potentials, which can be explained by the buckling of the long alkyl chains. Inclusion of an ether functionality allowed for more symmetry in the camel-shaped potential-dependent differential capacitance curves, suggesting similar excess ion density at both positive and negative potentials. This work contributes to understanding and predicting the interfacial electrode capacitance in ILs by understanding the balance of ionicmore » interactions and the associated repulsions at electrode–electrolyte interfaces that are pertinent to electrochemical energy storage, electrocatalysis, and electrochemical sensors.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Case Western Reserve Univ., Cleveland, OH (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Breakthrough Electrolytes for Energy Storage (BEES); Case Western Reserve Univ., Cleveland, OH (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1616162
Grant/Contract Number:  
SC0019409
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 124; Journal Issue: 10; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 25 ENERGY STORAGE; Interfaces; electrical properties; electrodes; ions; cations

Citation Formats

Klein, Jeffrey M., Squire, Henry, and Gurkan, Burcu. Electroanalytical Investigation of the Electrode–Electrolyte Interface of Quaternary Ammonium Ionic Liquids: Impact of Alkyl Chain Length and Ether Functionality. United States: N. p., 2019. Web. https://doi.org/10.1021/acs.jpcc.9b08016.
Klein, Jeffrey M., Squire, Henry, & Gurkan, Burcu. Electroanalytical Investigation of the Electrode–Electrolyte Interface of Quaternary Ammonium Ionic Liquids: Impact of Alkyl Chain Length and Ether Functionality. United States. https://doi.org/10.1021/acs.jpcc.9b08016
Klein, Jeffrey M., Squire, Henry, and Gurkan, Burcu. Thu . "Electroanalytical Investigation of the Electrode–Electrolyte Interface of Quaternary Ammonium Ionic Liquids: Impact of Alkyl Chain Length and Ether Functionality". United States. https://doi.org/10.1021/acs.jpcc.9b08016. https://www.osti.gov/servlets/purl/1616162.
@article{osti_1616162,
title = {Electroanalytical Investigation of the Electrode–Electrolyte Interface of Quaternary Ammonium Ionic Liquids: Impact of Alkyl Chain Length and Ether Functionality},
author = {Klein, Jeffrey M. and Squire, Henry and Gurkan, Burcu},
abstractNote = {The influence of ionic associations and potential-dependent interactions on the electrode–electrolyte interfacial structure of ionic liquids (ILs) is studied by electrochemical impedance spectroscopy (EIS) and surface-enhanced Raman spectroscopy (SERS) for a variety of asymmetric quaternary ammonium ILs. Specifically, the impact of cation alkyl chain length (C = 4, 8 and 16) and ether functionality on the interfacial structuring of ILs at the glassy carbon electrode surface is examined. Ammonium cations with alkyl chain length of 8 and 16 carbons are found to stabilize the formation of the bis(trifluorosulfonyl)imide, [TFSI], anion dense Stern layer at positive electrode potentials leading to larger capacitances. The longer alkyl chain of the cation is believed to screen the ion–ion repulsion among the anions by intruding into the interfacial anion layer. SERS suggests the presence of carbon-containing rings at the interface at both positive and negative electrode potentials, which can be explained by the buckling of the long alkyl chains. Inclusion of an ether functionality allowed for more symmetry in the camel-shaped potential-dependent differential capacitance curves, suggesting similar excess ion density at both positive and negative potentials. This work contributes to understanding and predicting the interfacial electrode capacitance in ILs by understanding the balance of ionic interactions and the associated repulsions at electrode–electrolyte interfaces that are pertinent to electrochemical energy storage, electrocatalysis, and electrochemical sensors.},
doi = {10.1021/acs.jpcc.9b08016},
journal = {Journal of Physical Chemistry. C},
number = 10,
volume = 124,
place = {United States},
year = {2019},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A short history of ionic liquids—from molten salts to neoteric solvents
journal, March 2002


Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation
journal, January 2001

  • Huddleston, Jonathan G.; Visser, Ann E.; Reichert, W. Matthew
  • Green Chemistry, Vol. 3, Issue 4
  • DOI: 10.1039/b103275p

Ionic liquids as electrolytes
journal, August 2006


Ionic-liquid materials for the electrochemical challenges of the future
journal, July 2009

  • Armand, Michel; Endres, Frank; MacFarlane, Douglas R.
  • Nature Materials, Vol. 8, Issue 8, p. 621-629
  • DOI: 10.1038/nmat2448

Ionic liquids. Green solvents for the future
journal, January 2000


Ionic liquid-based electrolytes for “beyond lithium” battery technologies
journal, January 2016

  • Giffin, Guinevere A.
  • Journal of Materials Chemistry A, Vol. 4, Issue 35
  • DOI: 10.1039/C6TA05260F

Ionic liquid dispersed Li+ ion oxide glasses and glass-ceramics: Assessment of electrical transport and thermal stability
journal, December 2015


Dye-Sensitized Solar Cells
journal, November 2010

  • Hagfeldt, Anders; Boschloo, Gerrit; Sun, Licheng
  • Chemical Reviews, Vol. 110, Issue 11
  • DOI: 10.1021/cr900356p

Mixed Ionic Liquid Improves Electrolyte Dynamics in Supercapacitors
journal, April 2018

  • Osti, Naresh C.; Gallegos, Alejandro; Dyatkin, Boris
  • The Journal of Physical Chemistry C, Vol. 122, Issue 19
  • DOI: 10.1021/acs.jpcc.8b02521

Materials for electrochemical capacitors
journal, November 2008

  • Simon, Patrice; Gogotsi, Yury
  • Nature Materials, Vol. 7, Issue 11
  • DOI: 10.1038/nmat2297

Applications of ionic liquids in electrochemical sensors
journal, January 2008


Ionic Liquids for CO 2 Capture and Emission Reduction
journal, December 2010

  • Brennecke, Joan F.; Gurkan, Burcu E.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 24
  • DOI: 10.1021/jz1014828

Ionic Liquid-Mediated Selective Conversion of CO2 to CO at Low Overpotentials
journal, September 2011

  • Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.
  • Science, Vol. 334, Issue 6056, p. 643-644
  • DOI: 10.1126/science.1209786

CHEMISTRY: Ionic Liquids--Solvents of the Future?
journal, October 2003


Ionic liquid processing of cellulose
journal, January 2012

  • Wang, Hui; Gurau, Gabriela; Rogers, Robin D.
  • Chemical Society Reviews, Vol. 41, Issue 4
  • DOI: 10.1039/c2cs15311d

Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride
journal, January 2007

  • Fort, Diego A.; Remsing, Richard C.; Swatloski, Richard P.
  • Green Chemistry, Vol. 9, Issue 1, p. 63-69
  • DOI: 10.1039/B607614A

Recent advances in zinc–air batteries
journal, January 2014


Improved accessibility of porous carbon electrodes with surfactant ionic liquids for supercapacitors
journal, October 2018

  • Xu, Ningjin; Klein, Jeffrey M.; Huang, Phoebe
  • Journal of Applied Electrochemistry, Vol. 49, Issue 2
  • DOI: 10.1007/s10800-018-1266-3

Electrospinning Biopolymers from Ionic Liquids Requires Control of Different Solution Properties than Volatile Organic Solvents
journal, May 2017

  • Zavgorodnya, Oleksandra; Shamshina, Julia L.; Bonner, Jonathan R.
  • ACS Sustainable Chemistry & Engineering, Vol. 5, Issue 6
  • DOI: 10.1021/acssuschemeng.7b00863

Double-Layer in Ionic Liquids:  Paradigm Change?
journal, May 2007

  • Kornyshev, Alexei A.
  • The Journal of Physical Chemistry B, Vol. 111, Issue 20
  • DOI: 10.1021/jp067857o

Mean-Field Theory of Electrical Double Layer In Ionic Liquids with Account of Short-Range Correlations
journal, January 2017


On the temperature dependence of the double layer capacitance of ionic liquids
journal, June 2018


On the concept of ionicity in ionic liquids
journal, January 2009

  • MacFarlane, Douglas R.; Forsyth, Maria; Izgorodina, Ekaterina I.
  • Physical Chemistry Chemical Physics, Vol. 11, Issue 25
  • DOI: 10.1039/b900201d

Interfaces of ionic liquids and transition metal surfaces—adsorption, growth, and thermal reactions of ultrathin [C1C1Im][Tf2N] films on metallic and oxidised Ni(111) surfaces
journal, January 2012

  • Cremer, T.; Wibmer, L.; Calderón, S. Krick
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 15
  • DOI: 10.1039/c2cp40278e

X-Ray diffraction and resonance shear measurement of nano-confined ionic liquids
journal, January 2018

  • Tomita, Kazuhito; Mizukami, Masashi; Nakano, Shinya
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 20
  • DOI: 10.1039/C7CP08611C

Differential Capacitance of the Electrical Double Layer in Imidazolium-Based Ionic Liquids:  Influence of Potential, Cation Size, and Temperature
journal, April 2008

  • Lockett, Vera; Sedev, Rossen; Ralston, John
  • The Journal of Physical Chemistry C, Vol. 112, Issue 19
  • DOI: 10.1021/jp7100732

Direct Measurement of the Differential Capacitance of Solvent-Free and Dilute Ionic Liquids
journal, December 2017


Layering and shear properties of an ionic liquid, 1-ethyl-3-methylimidazolium ethylsulfate, confined to nano-films between mica surfaces
journal, January 2010

  • Perkin, Susan; Albrecht, Tim; Klein, Jacob
  • Phys. Chem. Chem. Phys., Vol. 12, Issue 6
  • DOI: 10.1039/B920571C

Surface Structure at the Ionic Liquid−Electrified Metal Interface
journal, March 2008

  • Baldelli, Steven
  • Accounts of Chemical Research, Vol. 41, Issue 3
  • DOI: 10.1021/ar700185h

Structure of [C 4 mpyr][NTf 2 ] Room-Temperature Ionic Liquid at Charged Gold Interfaces
journal, May 2012

  • Lauw, Yansen; Horne, Michael D.; Rodopoulos, Theo
  • Langmuir, Vol. 28, Issue 19
  • DOI: 10.1021/la3005757

Surface Layering in Ionic Liquids:  An X-ray Reflectivity Study
journal, June 2005

  • Sloutskin, Eli; Ocko, Benjamin M.; Tamam, Lilach
  • Journal of the American Chemical Society, Vol. 127, Issue 21
  • DOI: 10.1021/ja0509679

Measurements of the potential of zero charge in room temperature ionic liquids at Ag electrode by surface-enhanced Raman spectroscopy
journal, August 2014


Probing double layer structure at Au/[BMIm]BF4 interface by molecular length-dependent SERS Stark effect
journal, August 2015


Relationships between Molecular Structure, Interfacial Structure, and Dynamics of Ionic Liquids near Neutral and Charged Surfaces
journal, November 2018

  • Gil, Phwey S.; Jorgenson, Sara J.; Riet, Adriaan R.
  • The Journal of Physical Chemistry C, Vol. 122, Issue 48
  • DOI: 10.1021/acs.jpcc.8b08644

Nanoscale Segregation in Room Temperature Ionic Liquids
journal, May 2007

  • Triolo, Alessandro; Russina, Olga; Bleif, Hans-Jurgen
  • The Journal of Physical Chemistry B, Vol. 111, Issue 18
  • DOI: 10.1021/jp067705t

New Experimental Evidences Regarding Conformational Equilibrium in Ammonium−Bis(trifluoromethanesulfonyl)imide Ionic Liquids
journal, July 2018

  • Gontrani, Lorenzo; Trequattrini, Francesco; Palumbo, Oriele
  • ChemPhysChem, Vol. 19, Issue 20
  • DOI: 10.1002/cphc.201800442

The Smallest Amphiphiles:  Nanostructure in Protic Room-Temperature Ionic Liquids with Short Alkyl Groups
journal, April 2008

  • Atkin, Rob; Warr, Gregory G.
  • The Journal of Physical Chemistry B, Vol. 112, Issue 14
  • DOI: 10.1021/jp801190u

Differential capacitance of the double layer at the electrode/ionic liquids interface
journal, January 2010

  • Lockett, Vera; Horne, Mike; Sedev, Rossen
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 39
  • DOI: 10.1039/c0cp00170h

Hysteresis of Potential-Dependent Changes in Ion Density and Structure of an Ionic Liquid on a Gold Electrode: In Situ Observation by Surface-Enhanced Infrared Absorption Spectroscopy
journal, September 2013

  • Motobayashi, Kenta; Minami, Kazuya; Nishi, Naoya
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 18
  • DOI: 10.1021/jz401645c

Structure and Dynamics at Ionic Liquid/Electrode Interfaces
journal, July 2015


Capacitive hysteresis at the 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)-trifluorophosphate–polycrystalline gold interface
journal, March 2018

  • Lucio, Anthony J.; Shaw, Scott K.
  • Analytical and Bioanalytical Chemistry, Vol. 410, Issue 19
  • DOI: 10.1007/s00216-018-0962-5

Potential dependent capacitance of [EMIM][TFSI], [N 1114 ][TFSI] and [PYR 13 ][TFSI] ionic liquids on glassy carbon
journal, January 2019

  • Klein, Jeffrey M.; Panichi, Evio; Gurkan, Burcu
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 7
  • DOI: 10.1039/C8CP04631J

Molecular Dynamics Simulation of the Ionic Liquid N -Ethyl- N,N -dimethyl- N -(2-methoxyethyl)ammonium Bis(trifluoromethanesulfonyl)imide
journal, October 2007

  • Siqueira, Leonardo J. A.; Ribeiro, Mauro C. C.
  • The Journal of Physical Chemistry B, Vol. 111, Issue 40
  • DOI: 10.1021/jp074840c

Rapid and Accurate Estimation of Densities of Room-Temperature Ionic Liquids and Salts
journal, March 2007

  • Ye, Chengfeng; Shreeve, Jean'ne M.
  • The Journal of Physical Chemistry A, Vol. 111, Issue 8
  • DOI: 10.1021/jp066202k

Voltammetry in Room Temperature Ionic Liquids: Comparisons and Contrasts with Conventional Electrochemical Solvents.
journal, February 2010

  • Barrosse-Antle, L. E.; Bond, A. M.; Compton, R. G.
  • Chemistry - An Asian Journal, Vol. 5, Issue 2
  • DOI: 10.1002/asia.200900191

On Capacitive Processes at the Interface between 1-Ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate and Au(111)
journal, March 2011

  • Drüschler, Marcel; Huber, Benedikt; Roling, Bernhard
  • The Journal of Physical Chemistry C, Vol. 115, Issue 14
  • DOI: 10.1021/jp200395j

Surface-Enhanced Raman Scattering:  From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures
journal, September 2002

  • Tian, Zhong-Qun; Ren, Bin; Wu, De-Yin
  • The Journal of Physical Chemistry B, Vol. 106, Issue 37
  • DOI: 10.1021/jp0257449

Surface-enhanced Raman scattering
journal, January 1998

  • Campion, Alan; Kambhampati, Patanjali
  • Chemical Society Reviews, Vol. 27, Issue 4
  • DOI: 10.1039/a827241z

Electroreduction of Oxygen in a Series of Room Temperature Ionic Liquids Composed of Group 15-Centered Cations and Anions
journal, June 2004

  • Evans, Russell G.; Klymenko, Oleksiy V.; Saddoughi, Sahar A.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 23
  • DOI: 10.1021/jp031309i

Investigating the electrochemical windows of ionic liquids
journal, January 2013

  • Hayyan, Maan; Mjalli, Farouq S.; Hashim, Mohd Ali
  • Journal of Industrial and Engineering Chemistry, Vol. 19, Issue 1
  • DOI: 10.1016/j.jiec.2012.07.011

The influence of air and its components on the cathodic stability of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide
journal, December 2007


Influence of chloride, water, and organic solvents on the physical properties of ionic liquids
journal, January 2000

  • Seddon, Kenneth R.; Stark, Annegret; Torres, María-José
  • Pure and Applied Chemistry, Vol. 72, Issue 12
  • DOI: 10.1351/pac200072122275

Quantification of Halide in Ionic Liquids Using Ion Chromatography
journal, April 2004

  • Villagrán, Constanza; Deetlefs, Maggel; Pitner, William R.
  • Analytical Chemistry, Vol. 76, Issue 7
  • DOI: 10.1021/ac035157z

Double Layer in Ionic Liquids: Overscreening versus Crowding
journal, January 2011


Characterization of the Lithium Surface in N-Methyl-N-alkylpyrrolidinium Bis(trifluoromethanesulfonyl)amide Room-Temperature Ionic Liquid Electrolytes
journal, January 2006

  • Howlett, P. C.; Brack, N.; Hollenkamp, A. F.
  • Journal of The Electrochemical Society, Vol. 153, Issue 3
  • DOI: 10.1149/1.2164726

Raman Investigation of the Ionic Liquid N -Methyl- N -propylpyrrolidinium Bis(trifluoromethanesulfonyl)imide and Its Mixture with LiN(SO 2 CF 3 ) 2
journal, January 2005

  • Castriota, M.; Caruso, T.; Agostino, R. G.
  • The Journal of Physical Chemistry A, Vol. 109, Issue 1
  • DOI: 10.1021/jp046030w

Surface-enhanced Raman spectroscopy of amino acids adsorbed on an electrochemically prepared silver surface
journal, July 1999

  • Stewart, S.; Fredericks, P. M.
  • Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 55, Issue 7-8
  • DOI: 10.1016/S1386-1425(98)00294-7

Application of Density Functional Theory and Vibrational Spectroscopy Toward the Rational Design of Ionic Liquids
journal, January 2007

  • Katsyuba, Sergey A.; Zvereva, Elena E.; Vidiš, Ana
  • The Journal of Physical Chemistry A, Vol. 111, Issue 2
  • DOI: 10.1021/jp064610i

Tables of molecular vibrational frequencies. Consolidated volume II
journal, July 1977

  • Shimanouchi, T.
  • Journal of Physical and Chemical Reference Data, Vol. 6, Issue 3
  • DOI: 10.1063/1.555560

The role of the C2 position in interionic interactions of imidazolium based ionic liquids: a vibrational and NMR spectroscopic study
journal, January 2010

  • Noack, Kristina; Schulz, Peter S.; Paape, Natalia
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 42
  • DOI: 10.1039/c0cp00486c

Vibrational Stark effect of adsorbates at electrochemical interfaces
journal, April 1996