DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Graphene-extracted membrane lipids facilitate the activation of integrin αvβ8

Abstract

Despite the remarkable electrochemical properties of graphene, strong van der Waals attraction between graphene and biomolecules often causes cytotoxicity, which hinders its applications in the biomedical field. Unfortunately, surface passivation of graphene might stimulate undesired immune response as the nanomaterial triggers cytokine production through membrane receptor activation. In this work, we use all-atom Molecular Dynamics (MD) simulations to unravel the underlying mechanism of graphene-induced inside-out activation of integrin αvβ8, a prominent membrane receptor expressed in immune cells. We model the transmembrane (TM) domains of integrin αvβ8 in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayer and observe the structural changes in the integrin–membrane complex when interacting with a graphene nanosheet across the membrane. We find that the β8 TM domain interacts with the graphene nanosheet directly or indirectly through extracted lipids, facilitating the pulling of a β8 subunit away from an αv subunit and thus leading to the disruption of the TM domain association by breaking the hydrophobic cluster in the cytoplasmic domains of the αv and β8 subunits. Alanine substitution of two conserved phenylalanine residues on the αv subunit at this hydrophobic cluster further reveals the importance of a stable T-shaped structure in retaining integrin in its inactive state. Our results agreemore » with previous studies on the interactions between other integrin subtypes and their endogenous activators, suggesting an intriguing role that the graphene nanosheet may play in the integrin-related signal transduction during its interaction with the membrane.« less

Authors:
ORCiD logo [1];  [2];  [3]
  1. IBM Thomas J. Watson Research Center, Yorktown Heights, NY (United States)
  2. Meritorious Autonomous Univ. of Puebla (BUAP), University City, Puebla (Mexico)
  3. IBM Thomas J. Watson Research Center, Yorktown Heights, NY (United States); Zhejiang Univ., Hangzhou (China)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE; W. M. Keck Foundation; IBM Blue Gene Science Program
OSTI Identifier:
1615781
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Nanoscale
Additional Journal Information:
Journal Volume: 12; Journal Issue: 14; Journal ID: ISSN 2040-3364
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Chen, Serena, Perez-Aguilar, Jose Manuel, and Zhou, Ruhong. Graphene-extracted membrane lipids facilitate the activation of integrin αvβ8. United States: N. p., 2020. Web. doi:10.1039/C9NR10469K.
Chen, Serena, Perez-Aguilar, Jose Manuel, & Zhou, Ruhong. Graphene-extracted membrane lipids facilitate the activation of integrin αvβ8. United States. https://doi.org/10.1039/C9NR10469K
Chen, Serena, Perez-Aguilar, Jose Manuel, and Zhou, Ruhong. Sun . "Graphene-extracted membrane lipids facilitate the activation of integrin αvβ8". United States. https://doi.org/10.1039/C9NR10469K. https://www.osti.gov/servlets/purl/1615781.
@article{osti_1615781,
title = {Graphene-extracted membrane lipids facilitate the activation of integrin αvβ8},
author = {Chen, Serena and Perez-Aguilar, Jose Manuel and Zhou, Ruhong},
abstractNote = {Despite the remarkable electrochemical properties of graphene, strong van der Waals attraction between graphene and biomolecules often causes cytotoxicity, which hinders its applications in the biomedical field. Unfortunately, surface passivation of graphene might stimulate undesired immune response as the nanomaterial triggers cytokine production through membrane receptor activation. In this work, we use all-atom Molecular Dynamics (MD) simulations to unravel the underlying mechanism of graphene-induced inside-out activation of integrin αvβ8, a prominent membrane receptor expressed in immune cells. We model the transmembrane (TM) domains of integrin αvβ8 in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayer and observe the structural changes in the integrin–membrane complex when interacting with a graphene nanosheet across the membrane. We find that the β8 TM domain interacts with the graphene nanosheet directly or indirectly through extracted lipids, facilitating the pulling of a β8 subunit away from an αv subunit and thus leading to the disruption of the TM domain association by breaking the hydrophobic cluster in the cytoplasmic domains of the αv and β8 subunits. Alanine substitution of two conserved phenylalanine residues on the αv subunit at this hydrophobic cluster further reveals the importance of a stable T-shaped structure in retaining integrin in its inactive state. Our results agree with previous studies on the interactions between other integrin subtypes and their endogenous activators, suggesting an intriguing role that the graphene nanosheet may play in the integrin-related signal transduction during its interaction with the membrane.},
doi = {10.1039/C9NR10469K},
journal = {Nanoscale},
number = 14,
volume = 12,
place = {United States},
year = {Sun Mar 01 00:00:00 EST 2020},
month = {Sun Mar 01 00:00:00 EST 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Structural Basis of Integrin Activation by Talin
journal, January 2007


Bilayer Thickness and Membrane Protein Function: An Energetic Perspective
journal, June 2007


Understanding biophysicochemical interactions at the nano–bio interface
journal, June 2009

  • Nel, Andre E.; Mädler, Lutz; Velegol, Darrell
  • Nature Materials, Vol. 8, Issue 7
  • DOI: 10.1038/nmat2442

Breaking the Integrin Hinge: A DEFINED STRUCTURAL CONSTRAINT REGULATES INTEGRIN SIGNALING
journal, March 1996

  • Hughes, Paul E.; Diaz-Gonzalez, Federico; Leong, Lilley
  • Journal of Biological Chemistry, Vol. 271, Issue 12
  • DOI: 10.1074/jbc.271.12.6571

How lipids affect the activities of integral membrane proteins
journal, November 2004


Scalable molecular dynamics with NAMD
journal, January 2005

  • Phillips, James C.; Braun, Rosemary; Wang, Wei
  • Journal of Computational Chemistry, Vol. 26, Issue 16, p. 1781-1802
  • DOI: 10.1002/jcc.20289

Nanoparticle-mediated cellular response is size-dependent
journal, March 2008

  • Jiang, Wen; Kim, Betty Y. S.; Rutka, James T.
  • Nature Nanotechnology, Vol. 3, Issue 3
  • DOI: 10.1038/nnano.2008.30

Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets
journal, July 2013


Synthesis of graphene
journal, February 2016

  • Bhuyan, Md. Sajibul Alam; Uddin, Md. Nizam; Islam, Md. Maksudul
  • International Nano Letters, Vol. 6, Issue 2
  • DOI: 10.1007/s40089-015-0176-1

Comprehensive analysis of sequences of a protein switch: Analysis of Sequences of a Protein Switch
journal, July 2015

  • Chen, Szu-Hua; Meller, Jaroslaw; Elber, Ron
  • Protein Science, Vol. 25, Issue 1
  • DOI: 10.1002/pro.2723

PEGylated graphene oxide elicits strong immunological responses despite surface passivation
journal, February 2017

  • Luo, Nana; Weber, Jeffrey K.; Wang, Shuang
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14537

Integrins in immunity
journal, December 2008

  • Evans, R.; Patzak, I.; Svensson, L.
  • Journal of Cell Science, Vol. 122, Issue 2
  • DOI: 10.1242/jcs.019117

Phospholipid Membrane Fluidity Alters Ligand Binding Activity of a G Protein-Coupled Receptor by Shifting the Conformational Equilibrium
journal, December 2018


Computational close up on protein-protein interactions: how to unravel the invisible using molecular dynamics simulations?: Computational close up on protein-protein interactions
journal, July 2015

  • Rakers, Christin; Bermudez, Marcel; Keller, Bettina G.
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 5, Issue 5
  • DOI: 10.1002/wcms.1222

The final steps of integrin activation: the end game
journal, April 2010

  • Shattil, Sanford J.; Kim, Chungho; Ginsberg, Mark H.
  • Nature Reviews Molecular Cell Biology, Vol. 11, Issue 4
  • DOI: 10.1038/nrm2871

Comparison of simple potential functions for simulating liquid water
journal, July 1983

  • Jorgensen, William L.; Chandrasekhar, Jayaraman; Madura, Jeffry D.
  • The Journal of Chemical Physics, Vol. 79, Issue 2
  • DOI: 10.1063/1.445869

A Specific Interface between Integrin Transmembrane Helices and Affinity for Ligand
journal, June 2004


Integrin activation by talin, kindlin and mechanical forces
journal, January 2019


Biomolecular Modeling: Goals, Problems, Perspectives
journal, June 2006

  • van Gunsteren, Wilfred F.; Bakowies, Dirk; Baron, Riccardo
  • Angewandte Chemie International Edition, Vol. 45, Issue 25
  • DOI: 10.1002/anie.200502655

Nonequilibrium Equality for Free Energy Differences
journal, April 1997


Hydrogen Bond Networks in Graphene Oxide Composite Paper: Structure and Mechanical Properties
journal, March 2010

  • Medhekar, Nikhil V.; Ramasubramaniam, Ashwin; Ruoff, Rodney S.
  • ACS Nano, Vol. 4, Issue 4
  • DOI: 10.1021/nn901934u

The Talin Head Domain Binds to Integrin β Subunit Cytoplasmic Tails and Regulates Integrin Activation
journal, October 1999

  • Calderwood, David A.; Zent, Roy; Grant, Richard
  • Journal of Biological Chemistry, Vol. 274, Issue 40
  • DOI: 10.1074/jbc.274.40.28071

Lipid fluidity and membrane protein dynamics
journal, November 1987


OPM database and PPM web server: resources for positioning of proteins in membranes
journal, September 2011

  • Lomize, Mikhail A.; Pogozheva, Irina D.; Joo, Hyeon
  • Nucleic Acids Research, Vol. 40, Issue D1
  • DOI: 10.1093/nar/gkr703

The structure of the integrin αIIbβ3 transmembrane complex explains integrin transmembrane signalling
journal, March 2009

  • Lau, Tong-Lay; Kim, Chungho; Ginsberg, Mark H.
  • The EMBO Journal, Vol. 28, Issue 9
  • DOI: 10.1038/emboj.2009.63

Bidirectional Transmembrane Signaling by Cytoplasmic Domain Separation in Integrins
journal, September 2003


Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types
journal, June 2010

  • Klauda, Jeffery B.; Venable, Richard M.; Freites, J. Alfredo
  • The Journal of Physical Chemistry B, Vol. 114, Issue 23
  • DOI: 10.1021/jp101759q

Biomolecular Simulation: A Computational Microscope for Molecular Biology
journal, June 2012


A Structural Mechanism of Integrin αIIbβ3 “Inside-Out” Activation as Regulated by Its Cytoplasmic Face
journal, September 2002


Empirical force fields for biological macromolecules: Overview and issues
journal, January 2004

  • Mackerell, Alexander D.
  • Journal of Computational Chemistry, Vol. 25, Issue 13
  • DOI: 10.1002/jcc.20082

Structure of Graphite Oxide Revisited
journal, June 1998

  • Lerf, Anton; He, Heyong; Forster, Michael
  • The Journal of Physical Chemistry B, Vol. 102, Issue 23
  • DOI: 10.1021/jp9731821

Revisiting Hydrophobic Mismatch with Free Energy Simulation Studies of Transmembrane Helix Tilt and Rotation
journal, July 2010


Multiscale simulations suggest a mechanism for integrin inside-out activation
journal, July 2011

  • Kalli, A. C.; Campbell, I. D.; Sansom, M. S. P.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 29
  • DOI: 10.1073/pnas.1104505108

Integrin Mechano-chemical Signaling Generates Plasma Membrane Nanodomains that Promote Cell Spreading
journal, June 2019

  • Kalappurakkal, Joseph Mathew; Anilkumar, Anupama Ambika; Patra, Chandrima
  • Cell, Vol. 177, Issue 7
  • DOI: 10.1016/j.cell.2019.04.037

Charging nanoparticles: increased binding of Gd@C 82 (OH) 22 derivatives to human MMP-9
journal, January 2018

  • Chen, Serena H.; Kang, Seung-gu; Luo, Judong
  • Nanoscale, Vol. 10, Issue 12
  • DOI: 10.1039/C8NR00127H

Interfacing proteins with graphitic nanomaterials: from spontaneous attraction to tailored assemblies
journal, January 2015

  • De Leo, Federica; Magistrato, Alessandra; Bonifazi, Davide
  • Chemical Society Reviews, Vol. 44, Issue 19
  • DOI: 10.1039/C5CS00190K

Atomic Structure of Reduced Graphene Oxide
journal, April 2010

  • Gómez-Navarro, Cristina; Meyer, Jannik C.; Sundaram, Ravi S.
  • Nano Letters, Vol. 10, Issue 4
  • DOI: 10.1021/nl9031617

Biopharmaceutics and Therapeutic Potential of Engineered Nanomaterials
journal, October 2008


The energy landscape of a protein switch
journal, January 2014

  • Chen, Szu-Hua; Elber, Ron
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 14
  • DOI: 10.1039/c3cp55209h

Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies
journal, August 2011

  • Ganguly, Abhijit; Sharma, Surbhi; Papakonstantinou, Pagona
  • The Journal of Physical Chemistry C, Vol. 115, Issue 34
  • DOI: 10.1021/jp203741y

Membrane Insertion and Phospholipids Extraction by Graphyne Nanosheets
journal, January 2017

  • Gu, Zonglin; Yang, Zaixing; Luan, Binquan
  • The Journal of Physical Chemistry C, Vol. 121, Issue 4
  • DOI: 10.1021/acs.jpcc.6b10548

Requirement of α and β subunit transmembrane helix separation for integrin outside-in signaling
journal, October 2007


Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems
journal, June 1993

  • Darden, Tom; York, Darrin; Pedersen, Lee
  • The Journal of Chemical Physics, Vol. 98, Issue 12
  • DOI: 10.1063/1.464397

Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy
journal, January 2008

  • Liu, Z.; Davis, C.; Cai, W.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 5
  • DOI: 10.1073/pnas.0707654105

Computational approaches to cell–nanomaterial interactions: keeping balance between therapeutic efficiency and cytotoxicity
journal, January 2018

  • Ding, Hong-ming; Ma, Yu-qiang
  • Nanoscale Horizons, Vol. 3, Issue 1
  • DOI: 10.1039/C7NH00138J

Molecular Modeling for Nanomaterial–Biology Interactions: Opportunities, Challenges, and Perspectives
journal, October 2019

  • Casalini, Tommaso; Limongelli, Vittorio; Schmutz, Mélanie
  • Frontiers in Bioengineering and Biotechnology, Vol. 7
  • DOI: 10.3389/fbioe.2019.00268

Stability of Ligands on Nanoparticles Regulating the Integrity of Biological Membranes at the Nano–Lipid Interface
journal, July 2019


An interaction between  v 8 integrin and Band 4.1B via a highly conserved region of the Band 4.1 C-terminal domain
journal, September 2005

  • McCarty, J. H.; Cook, A. A.; Hynes, R. O.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 38
  • DOI: 10.1073/pnas.0506068102

Theory, simulations and the design of functionalized nanoparticles for biomedical applications: A Soft Matter Perspective
journal, November 2017


Integrin extension enables ultrasensitive regulation by cytoskeletal force
journal, April 2017

  • Li, Jing; Springer, Timothy A.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 18
  • DOI: 10.1073/pnas.1704171114

The Structure of a Receptor with Two Associating Transmembrane Domains on the Cell Surface: Integrin αIIbβ3
journal, April 2009


Modulation of the affinity of integrin alpha IIb beta 3 (GPIIb-IIIa) by the cytoplasmic domain of alpha IIb
journal, November 1991


Molecular dynamics simulations of biomolecules
journal, September 2002

  • Karplus, Martin; McCammon, J. Andrew
  • Nature Structural Biology, Vol. 9, Issue 9
  • DOI: 10.1038/nsb0902-646

A Strategy for Producing Pure Single-Layer Graphene Sheets Based on a Confined Self-Assembly Approach
journal, July 2009

  • Zhang, Weixia; Cui, Jiecheng; Tao, Cheng-an
  • Angewandte Chemie International Edition, Vol. 48, Issue 32
  • DOI: 10.1002/anie.200902365

Chemistry and Properties of Nanocrystals of Different Shapes
journal, April 2005

  • Burda, Clemens; Chen, Xiaobo; Narayanan, Radha
  • Chemical Reviews, Vol. 105, Issue 4
  • DOI: 10.1021/cr030063a

Strategies in the design of nanoparticles for therapeutic applications
journal, July 2010

  • Petros, Robby A.; DeSimone, Joseph M.
  • Nature Reviews Drug Discovery, Vol. 9, Issue 8
  • DOI: 10.1038/nrd2591

Defect-assisted protein HP35 denaturation on graphene
journal, January 2019

  • Gu, Zonglin; Song, Wei; Chen, Serena H.
  • Nanoscale, Vol. 11, Issue 41
  • DOI: 10.1039/C9NR01143A

Surface Curvature Relation to Protein Adsorption for Carbon-based Nanomaterials
journal, June 2015

  • Gu, Zonglin; Yang, Zaixing; Chong, Yu
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep10886

Concentration-dependent binding of CdSe quantum dots on the SH3 domain
journal, January 2018

  • Bell, David R.; Kang, Seung-Gu; Huynh, Tien
  • Nanoscale, Vol. 10, Issue 1
  • DOI: 10.1039/C7NR06148J

Calculation of helix packing angles in protein structures
journal, July 2003


Adsorption of Villin Headpiece onto Graphene, Carbon Nanotube, and C60: Effect of Contacting Surface Curvatures on Binding Affinity
journal, November 2011

  • Zuo, Guanghong; Zhou, Xin; Huang, Qing
  • The Journal of Physical Chemistry C, Vol. 115, Issue 47
  • DOI: 10.1021/jp208967t

Integrin signalling and function in immune cells: Integrins in immune cells
journal, March 2012


Mechanical measurement of red cell membrane thickness
journal, April 1983


VMD: Visual molecular dynamics
journal, February 1996


Localized Lipid Packing of Transmembrane Domains Impedes Integrin Clustering
journal, March 2013