DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Space‐Based Analysis of the Cloud Thermodynamic Phase Transition for Varying Microphysical and Meteorological Regimes

Abstract

Abstract Phase transitions leading to cloud glaciation occur at temperatures that vary between 38°C and 0°C depending on aerosol types and concentrations, the meteorology, and cloud microphysical and macrophysical parameters, although the relationships remain poorly understood. Here, we statistically retrieve a cloud glaciation temperature from two passive space‐based instruments that are part of the NASA/CNES A‐Train, the POLarization and Directionality of the Earth's Reflectances (POLDER) and the MODerate resolution Imaging Spectroradiometer (MODIS). We compare the glaciation temperature for varying bins of cloud droplet effective radius, latitude, and large‐scale vertical pressure velocity and specific humidity at 700 hPa. Cloud droplet size has the strongest influence on glaciation temperature: For cloud droplets larger than 21  m, the glaciation temperature is 6°C higher than for cloud droplets smaller than 9  m. Stronger updrafts are also associated with lower glaciation temperatures.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3]; ORCiD logo [4]
  1. Univ. Lille, CNRS, UMR 8518 ‐ LOA ‐ Laboratoire d’Optique Atmosphérique Lille France, Department of Atmospheric Sciences University of Utah Salt Lake City UT USA, Institute of Meteorology and Climate Research Karlsruhe Institute of Technology Karlsruhe Germany
  2. Univ. Lille, CNRS, UMR 8518 ‐ LOA ‐ Laboratoire d’Optique Atmosphérique Lille France
  3. NASA Langley Research Center Hampton VA USA
  4. Department of Atmospheric Sciences University of Utah Salt Lake City UT USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1615527
Alternate Identifier(s):
OSTI ID: 1604480
Grant/Contract Number:  
SC0016282
Resource Type:
Published Article
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Name: Geophysical Research Letters Journal Volume: 47 Journal Issue: 6; Journal ID: ISSN 0094-8276
Publisher:
American Geophysical Union (AGU)
Country of Publication:
United States
Language:
English

Citation Formats

Coopman, Q., Riedi, J., Zeng, S., and Garrett, T. J. Space‐Based Analysis of the Cloud Thermodynamic Phase Transition for Varying Microphysical and Meteorological Regimes. United States: N. p., 2020. Web. doi:10.1029/2020GL087122.
Coopman, Q., Riedi, J., Zeng, S., & Garrett, T. J. Space‐Based Analysis of the Cloud Thermodynamic Phase Transition for Varying Microphysical and Meteorological Regimes. United States. https://doi.org/10.1029/2020GL087122
Coopman, Q., Riedi, J., Zeng, S., and Garrett, T. J. Fri . "Space‐Based Analysis of the Cloud Thermodynamic Phase Transition for Varying Microphysical and Meteorological Regimes". United States. https://doi.org/10.1029/2020GL087122.
@article{osti_1615527,
title = {Space‐Based Analysis of the Cloud Thermodynamic Phase Transition for Varying Microphysical and Meteorological Regimes},
author = {Coopman, Q. and Riedi, J. and Zeng, S. and Garrett, T. J.},
abstractNote = {Abstract Phase transitions leading to cloud glaciation occur at temperatures that vary between 38°C and 0°C depending on aerosol types and concentrations, the meteorology, and cloud microphysical and macrophysical parameters, although the relationships remain poorly understood. Here, we statistically retrieve a cloud glaciation temperature from two passive space‐based instruments that are part of the NASA/CNES A‐Train, the POLarization and Directionality of the Earth's Reflectances (POLDER) and the MODerate resolution Imaging Spectroradiometer (MODIS). We compare the glaciation temperature for varying bins of cloud droplet effective radius, latitude, and large‐scale vertical pressure velocity and specific humidity at 700 hPa. Cloud droplet size has the strongest influence on glaciation temperature: For cloud droplets larger than 21  m, the glaciation temperature is 6°C higher than for cloud droplets smaller than 9  m. Stronger updrafts are also associated with lower glaciation temperatures.},
doi = {10.1029/2020GL087122},
journal = {Geophysical Research Letters},
number = 6,
volume = 47,
place = {United States},
year = {Fri Mar 13 00:00:00 EDT 2020},
month = {Fri Mar 13 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1029/2020GL087122

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

CALIPSO/CALIOP Cloud Phase Discrimination Algorithm
journal, November 2009

  • Hu, Yongxiang; Winker, David; Vaughan, Mark
  • Journal of Atmospheric and Oceanic Technology, Vol. 26, Issue 11
  • DOI: 10.1175/2009JTECHA1280.1

Ice particles in stratiform clouds in the Arctic and possible mechanisms for the production of high ice concentrations
journal, July 2001

  • Rangno, Arthur L.; Hobbs, Peter V.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D14
  • DOI: 10.1029/2000JD900286

Cloud detection and derivation of cloud properties from POLDER
journal, September 1997

  • Buriez, J. C.; Vanbauce, C.; Parol, F.
  • International Journal of Remote Sensing, Vol. 18, Issue 13
  • DOI: 10.1080/014311697217332

Discrepancies with satellite observations in the spatial structure of global precipitation as derived from global climate models
journal, November 2018

  • Tapiador, Francisco J.; Navarro, Andrés; Jiménez, Alfonso
  • Quarterly Journal of the Royal Meteorological Society, Vol. 144, Issue S1
  • DOI: 10.1002/qj.3289

Arctic synoptic regimes: Comparing domain-wide Arctic cloud observations with CAM4 and CAM5 during similar dynamics: CAM4 AND CAM5 ARCTIC CLOUD EVALUATION
journal, August 2012

  • Barton, Neil P.; Klein, Stephen A.; Boyle, James S.
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D15
  • DOI: 10.1029/2012JD017589

Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude, and Optical Depth
journal, June 2012

  • Zelinka, Mark D.; Klein, Stephen A.; Hartmann, Dennis L.
  • Journal of Climate, Vol. 25, Issue 11
  • DOI: 10.1175/JCLI-D-11-00249.1

Evaluation of the cloud thermodynamic phase in a climate model using CALIPSO-GOCCP: CALIPSO-GOCCP CLOUD THERMODYNAMIC PHASE
journal, July 2013

  • Cesana, Grégory; Chepfer, Hélène
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 14
  • DOI: 10.1002/jgrd.50376

Cloud thermodynamic phase inferred from merged POLDER and MODIS data
journal, January 2010


Glaciation temperatures of convective clouds ingesting desert dust, air pollution and smoke from forest fires: AEROSOL GLACIATION OF CONVECTIVE CLOUDS
journal, November 2011

  • Rosenfeld, Daniel; Yu, Xing; Liu, Guihua
  • Geophysical Research Letters, Vol. 38, Issue 21
  • DOI: 10.1029/2011GL049423

Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements
journal, January 2010

  • Hu, Yongxiang; Rodier, Sharon; Xu, Kuan-man
  • Journal of Geophysical Research, Vol. 115
  • DOI: 10.1029/2009JD012384

Effects of long-range aerosol transport on the microphysical properties of low-level liquid clouds in the Arctic
journal, January 2016

  • Coopman, Quentin; Garrett, Timothy J.; Riedi, Jérôme
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 7
  • DOI: 10.5194/acp-16-4661-2016

Influence of cloud phase composition on climate feedbacks
journal, April 2014

  • Choi, Yong-Sang; Ho, Chang-Hoi; Park, Chang-Eui
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 7
  • DOI: 10.1002/2013JD020582

Cloud thermodynamical phase classification from the POLDER spaceborne instrument
journal, June 2000

  • Goloub, P.; Herman, M.; Chepfer, H.
  • Journal of Geophysical Research: Atmospheres, Vol. 105, Issue D11
  • DOI: 10.1029/1999JD901183

Observational constraints on mixed-phase clouds imply higher climate sensitivity
journal, April 2016


Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP
journal, January 2008

  • Holz, R. E.; Ackerman, S. A.; Nagle, F. W.
  • Journal of Geophysical Research, Vol. 113
  • DOI: 10.1029/2008JD009837

Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals: RAIN FROM LIQUID- AND ICE-PHASE CLOUDS
journal, August 2015

  • Mülmenstädt, Johannes; Sourdeval, O.; Delanoë, J.
  • Geophysical Research Letters, Vol. 42, Issue 15
  • DOI: 10.1002/2015GL064604

Theoretical Analysis of Liquid–Ice Interaction in the Unsaturated Environment with Application to the Problem of Homogeneous Mixing
journal, April 2018

  • Pinsky, M.; Khain, A.; Korolev, A.
  • Journal of the Atmospheric Sciences, Vol. 75, Issue 4
  • DOI: 10.1175/JAS-D-17-0228.1

Intercomparison of the cloud water phase among global climate models: CLOUD WATER PHASE IN GCMs
journal, March 2014

  • Komurcu, Muge; Storelvmo, Trude; Tan, Ivy
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 6
  • DOI: 10.1002/2013JD021119

On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs: CLOUD COVER, MIXED-PHASE, AND ALBEDO
journal, May 2016

  • McCoy, Daniel T.; Tan, Ivy; Hartmann, Dennis L.
  • Journal of Advances in Modeling Earth Systems, Vol. 8, Issue 2
  • DOI: 10.1002/2015MS000589

An initial analysis of the pixel-level uncertainties in global MODIS cloud optical thickness and effective particle size retrievals
conference, December 2004

  • Platnick, Steven; Pincus, Robert; Wind, Brad
  • Fourth International Asia-Pacific Environmental Remote Sensing Symposium 2004: Remote Sensing of the Atmosphere, Ocean, Environment, and Space, SPIE Proceedings
  • DOI: 10.1117/12.578353

The ERA-Interim reanalysis: configuration and performance of the data assimilation system
journal, April 2011

  • Dee, D. P.; Uppala, S. M.; Simmons, A. J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 137, Issue 656
  • DOI: 10.1002/qj.828

Comparison of near-infrared and thermal infrared cloud phase detections
journal, January 2006

  • Chylek, Petr; Robinson, S.; Dubey, M. K.
  • Journal of Geophysical Research, Vol. 111, Issue D20
  • DOI: 10.1029/2006JD007140

Secondary Ice Production by Fragmentation of Freezing Drops: Formulation and Theory
journal, September 2018

  • Phillips, Vaughan T. J.; Patade, Sachin; Gutierrez, Julie
  • Journal of the Atmospheric Sciences, Vol. 75, Issue 9
  • DOI: 10.1175/JAS-D-17-0190.1

Evaluation of cloud thermodynamic phase parametrizations in the LMDZ GCM by using POLDER satellite data: EVALUATION OF GCM CLOUD PHASE
journal, March 2004

  • Doutriaux-Boucher, M.; Quaas, J.
  • Geophysical Research Letters, Vol. 31, Issue 6
  • DOI: 10.1029/2003GL019095

A Comparison of Cloud Classification Methodologies: Differences Between Cloud and Dynamical Regimes
journal, October 2018

  • McDonald, A. J.; Parsons, S.
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 19
  • DOI: 10.1029/2018JD028595

Mechanisms of the Negative Shortwave Cloud Feedback in Middle to High Latitudes
journal, January 2016


Evidence for Changes in Arctic Cloud Phase Due to Long‐Range Pollution Transport
journal, October 2018

  • Coopman, Q.; Riedi, J.; Finch, D. P.
  • Geophysical Research Letters, Vol. 45, Issue 19
  • DOI: 10.1029/2018GL079873

Homogeneous nucleation of supercooled water: Results from a new equation of state
journal, November 1997

  • Jeffery, C. A.; Austin, P. H.
  • Journal of Geophysical Research: Atmospheres, Vol. 102, Issue D21
  • DOI: 10.1029/97JD02243

Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms
journal, November 2009

  • Winker, David M.; Vaughan, Mark A.; Omar, Ali
  • Journal of Atmospheric and Oceanic Technology, Vol. 26, Issue 11
  • DOI: 10.1175/2009JTECHA1281.1

Elucidating ice formation pathways in the aerosol–climate model ECHAM6-HAM2
journal, January 2019

  • Dietlicher, Remo; Neubauer, David; Lohmann, Ulrike
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 14
  • DOI: 10.5194/acp-19-9061-2019

Observed Southern Ocean Cloud Properties and Shortwave Reflection. Part I: Calculation of SW Flux from Observed Cloud Properties
journal, December 2014

  • McCoy, Daniel T.; Hartmann, Dennis L.; Grosvenor, Daniel P.
  • Journal of Climate, Vol. 27, Issue 23
  • DOI: 10.1175/JCLI-D-14-00287.1

A New Look at Homogeneous Ice Nucleation in Supercooled Water Drops
journal, June 1995


Causes of Higher Climate Sensitivity in CMIP6 Models
journal, January 2020

  • Zelinka, Mark D.; Myers, Timothy A.; McCoy, Daniel T.
  • Geophysical Research Letters, Vol. 47, Issue 1
  • DOI: 10.1029/2019GL085782

Evidence that ice forms primarily in supercooled liquid clouds at temperatures > −27°C: ICE NUCLEATION IN MID-LEVEL CLOUDS
journal, July 2011

  • Westbrook, C. D.; Illingworth, A. J.
  • Geophysical Research Letters, Vol. 38, Issue 14
  • DOI: 10.1029/2011GL048021

Multimodel evaluation of cloud phase transition using satellite and reanalysis data
journal, August 2015

  • Cesana, G.; Waliser, D. E.; Jiang, X.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 15
  • DOI: 10.1002/2014JD022932

Cloud Phase Discrimination by Reflectance Measurements near 1.6 and 2.2 μm
journal, November 1987


Supersaturation of Water Vapor in Clouds
journal, December 2003


Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level: ARCTIC SEA ICE AND CLOUD COVARIANCE
journal, December 2015

  • Taylor, Patrick C.; Kato, Seiji; Xu, Kuan-Man
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 24
  • DOI: 10.1002/2015JD023520

Aerosol Effect on the Cloud Phase of Low‐Level Clouds Over the Arctic
journal, July 2019

  • Filioglou, M.; Mielonen, T.; Balis, D.
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 14
  • DOI: 10.1029/2018JD030088

Detection of Mixed‐Phase Convective Clouds by a Binary Phase Information From the Passive Geostationary Instrument SEVIRI
journal, May 2019

  • Coopman, Q.; Hoose, C.; Stengel, M.
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 9
  • DOI: 10.1029/2018JD029772

The role of cloud phase in Earth's radiation budget: CLOUD PHASE IN EARTH'S RADIATION BUDGET
journal, March 2017

  • Matus, Alexander V.; L'Ecuyer, Tristan S.
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 5
  • DOI: 10.1002/2016JD025951

MODIS Cloud-Top Property Refinements for Collection 6
journal, June 2012

  • Baum, Bryan A.; Menzel, W. Paul; Frey, Richard A.
  • Journal of Applied Meteorology and Climatology, Vol. 51, Issue 6
  • DOI: 10.1175/JAMC-D-11-0203.1

Space observations of cold-cloud phase change
journal, June 2010

  • Choi, Y. -S.; Lindzen, R. S.; Ho, C. -H.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 25
  • DOI: 10.1073/pnas.1006241107

Mixed-Phase Clouds: Progress and Challenges
journal, January 2017


Production of Ice in Tropospheric Clouds: A Review
journal, June 2005

  • Cantrell, Will; Heymsfield, Andrew
  • Bulletin of the American Meteorological Society, Vol. 86, Issue 6
  • DOI: 10.1175/BAMS-86-6-795

Cloud Detection from the Spaceborne POLDER Instrument and Validation against Surface Synoptic Observations
journal, June 1999


Cloud glaciation temperature estimation from passive remote sensing data with evolutionary computing: CLOUD GLACIATION TEMPERATURE ESTIMATION
journal, November 2016

  • Carro-Calvo, L.; Hoose, C.; Stengel, M.
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 22
  • DOI: 10.1002/2016JD025552