DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Correlated fluorescence quenching and topographic mapping of Light-Harvesting Complex II within surface-assembled aggregates and lipid bilayers

Abstract

Light-Harvesting Complex II (LHCII) is a chlorophyll-protein antenna complex that efficiently absorbs solar energy and transfers electronic excited states to photosystems I and II. Under excess light intensity LHCII can adopt a photoprotective state in which excitation energy is safely dissipated as heat, a process known as Non-Photochemical Quenching (NPQ). In vivo NPQ is triggered by combinatorial factors including transmembrane ΔpH, PsbS protein and LHCII-bound zeaxanthin, leading to dramatically shortened LHCII fluorescence lifetimes. In vitro, LHCII in detergent solution or in proteoliposomes can reversibly adopt an NPQ-like state, via manipulation of detergent/protein ratio, lipid/protein ratio, pH or pressure. Previous spectroscopic investigations revealed changes in exciton dynamics and protein conformation that accompany quenching, however, LHCII-LHCII interactions have not been extensively studied. Here, we correlated fluorescence lifetime imaging microscopy (FLIM) and atomic force microscopy (AFM) of trimeric LHCII adsorbed to mica substrates and manipulated the environment to cause varying degrees of quenching. AFM showed that LHCII self-assembled onto mica forming 2D-aggregates (25–150 nm width). FLIM determined that LHCII in these aggregates were in a quenched state, with much lower fluorescence lifetimes (~0.25 ns) compared to free LHCII in solution (2.2–3.9 ns). LHCII-LHCII interactions were disrupted by thylakoid lipids or phospholipids, leading tomore » intermediate fluorescent lifetimes (0.6–0.9 ns). To our knowledge, this is the first in vitro correlation of nanoscale membrane imaging with LHCII quenching. Our findings suggest that lipids could play a key role in modulating the extent of LHCII-LHCII interactions within the thylakoid membrane and so the propensity for NPQ activation.« less

Authors:
; ; ;
Publication Date:
Research Org.:
Washington Univ., St. Louis, MO (United States); Energy Frontier Research Centers (EFRC) (United States). Photosynthetic Antenna Research Center (PARC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); Biotechnology and Biological Sciences Research Council (BBSRC UK); European Research Council (ERC)
OSTI Identifier:
1615096
Alternate Identifier(s):
OSTI ID: 1566429
Grant/Contract Number:  
SC 0001035; SC0001035; BB/M013723/1; BB/M000265/1; 338895
Resource Type:
Published Article
Journal Name:
Biochimica et Biophysica Acta - Bioenergetics
Additional Journal Information:
Journal Name: Biochimica et Biophysica Acta - Bioenergetics Journal Volume: 1859 Journal Issue: 10; Journal ID: ISSN 0005-2728
Publisher:
Elsevier
Country of Publication:
Netherlands
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; solar (fuels); photosynthesis (natural and artificial); biofuels (including algae and biomass); bio-inspired; charge transport; membrane; synthesis (novel materials); synthesis (self-assembly)

Citation Formats

Adams, Peter G., Vasilev, Cvetelin, Hunter, C. Neil, and Johnson, Matthew P. Correlated fluorescence quenching and topographic mapping of Light-Harvesting Complex II within surface-assembled aggregates and lipid bilayers. Netherlands: N. p., 2018. Web. doi:10.1016/j.bbabio.2018.06.011.
Adams, Peter G., Vasilev, Cvetelin, Hunter, C. Neil, & Johnson, Matthew P. Correlated fluorescence quenching and topographic mapping of Light-Harvesting Complex II within surface-assembled aggregates and lipid bilayers. Netherlands. https://doi.org/10.1016/j.bbabio.2018.06.011
Adams, Peter G., Vasilev, Cvetelin, Hunter, C. Neil, and Johnson, Matthew P. Mon . "Correlated fluorescence quenching and topographic mapping of Light-Harvesting Complex II within surface-assembled aggregates and lipid bilayers". Netherlands. https://doi.org/10.1016/j.bbabio.2018.06.011.
@article{osti_1615096,
title = {Correlated fluorescence quenching and topographic mapping of Light-Harvesting Complex II within surface-assembled aggregates and lipid bilayers},
author = {Adams, Peter G. and Vasilev, Cvetelin and Hunter, C. Neil and Johnson, Matthew P.},
abstractNote = {Light-Harvesting Complex II (LHCII) is a chlorophyll-protein antenna complex that efficiently absorbs solar energy and transfers electronic excited states to photosystems I and II. Under excess light intensity LHCII can adopt a photoprotective state in which excitation energy is safely dissipated as heat, a process known as Non-Photochemical Quenching (NPQ). In vivo NPQ is triggered by combinatorial factors including transmembrane ΔpH, PsbS protein and LHCII-bound zeaxanthin, leading to dramatically shortened LHCII fluorescence lifetimes. In vitro, LHCII in detergent solution or in proteoliposomes can reversibly adopt an NPQ-like state, via manipulation of detergent/protein ratio, lipid/protein ratio, pH or pressure. Previous spectroscopic investigations revealed changes in exciton dynamics and protein conformation that accompany quenching, however, LHCII-LHCII interactions have not been extensively studied. Here, we correlated fluorescence lifetime imaging microscopy (FLIM) and atomic force microscopy (AFM) of trimeric LHCII adsorbed to mica substrates and manipulated the environment to cause varying degrees of quenching. AFM showed that LHCII self-assembled onto mica forming 2D-aggregates (25–150 nm width). FLIM determined that LHCII in these aggregates were in a quenched state, with much lower fluorescence lifetimes (~0.25 ns) compared to free LHCII in solution (2.2–3.9 ns). LHCII-LHCII interactions were disrupted by thylakoid lipids or phospholipids, leading to intermediate fluorescent lifetimes (0.6–0.9 ns). To our knowledge, this is the first in vitro correlation of nanoscale membrane imaging with LHCII quenching. Our findings suggest that lipids could play a key role in modulating the extent of LHCII-LHCII interactions within the thylakoid membrane and so the propensity for NPQ activation.},
doi = {10.1016/j.bbabio.2018.06.011},
journal = {Biochimica et Biophysica Acta - Bioenergetics},
number = 10,
volume = 1859,
place = {Netherlands},
year = {Mon Oct 01 00:00:00 EDT 2018},
month = {Mon Oct 01 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1016/j.bbabio.2018.06.011

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Thermal stability of trimeric light-harvesting chlorophyll a/b complex (LHCIIb) in liposomes of thylakoid lipids
journal, December 2006

  • Yang, Chunhong; Boggasch, Stephanie; Haase, Winfried
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1757, Issue 12
  • DOI: 10.1016/j.bbabio.2006.08.010

Light-induced Dissociation of an Antenna Hetero-oligomer Is Needed for Non-photochemical Quenching Induction
journal, March 2009

  • Betterle, Nico; Ballottari, Matteo; Zorzan, Simone
  • Journal of Biological Chemistry, Vol. 284, Issue 22
  • DOI: 10.1074/jbc.M808625200

The Specificity of Controlled Protein Disorder in the Photoprotection of Plants
journal, August 2013

  • Krüger, Tjaart P. J.; Ilioaia, Cristian; Johnson, Matthew P.
  • Biophysical Journal, Vol. 105, Issue 4
  • DOI: 10.1016/j.bpj.2013.07.014

Polarization control of metal-enhanced fluorescence in hybrid assemblies of photosynthetic complexes and gold nanorods
journal, January 2014

  • Bujak, Ł.; Olejnik, M.; Brotosudarmo, T. H. P.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 19
  • DOI: 10.1039/c3cp54364a

Importance of the hexagonal lipid phase in biological membrane organization
journal, January 2013


Controlled Disorder in Plant Light-Harvesting Complex II Explains Its Photoprotective Role
journal, June 2012

  • Krüger, Tjaart P. J.; Ilioaia, Cristian; Johnson, Matthew P.
  • Biophysical Journal, Vol. 102, Issue 11
  • DOI: 10.1016/j.bpj.2012.04.044

Adaptation of intracytoplasmic membranes to altered light intensity in Rhodobacter sphaeroides
journal, September 2012

  • Adams, Peter G.; Hunter, C. Neil
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1817, Issue 9
  • DOI: 10.1016/j.bbabio.2012.05.013

Time-Resolved Fluorescence Analysis of the Photosystem II Antenna Proteins in Detergent Micelles and Liposomes
journal, October 2001

  • Moya, Ismael; Silvestri, Mariuccia; Vallon, Olivier
  • Biochemistry, Vol. 40, Issue 42
  • DOI: 10.1021/bi010342x

Galactolipid synthesis in chloroplast inner envelope is essential for proper thylakoid biogenesis, photosynthesis, and embryogenesis
journal, October 2007

  • Kobayashi, K.; Kondo, M.; Fukuda, H.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 43, p. 17216-17221
  • DOI: 10.1073/pnas.0704680104

Direct energy transfer from the major antenna to the photosystem II core complexes in the absence of minor antennae in liposomes
journal, February 2015

  • Sun, Ruixue; Liu, Kun; Dong, Lianqing
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1847, Issue 2
  • DOI: 10.1016/j.bbabio.2014.11.005

Quantum Yield of Charge Separation in Photosystem II: Functional Effect of Changes in the Antenna Size upon Light Acclimation
journal, April 2013

  • Wientjes, Emilie; van Amerongen, Herbert; Croce, Roberta
  • The Journal of Physical Chemistry B, Vol. 117, Issue 38
  • DOI: 10.1021/jp401663w

An ‘all pigment’ model of excitation quenching in LHCII
journal, January 2015

  • Chmeliov, Jevgenij; Bricker, William P.; Lo, Cynthia
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 24
  • DOI: 10.1039/C5CP01905B

Single-Molecule Identification of Quenched and Unquenched States of LHCII
journal, February 2015

  • Schlau-Cohen, Gabriela S.; Yang, Hsiang-Yu; Krüger, Tjaart P. J.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 5
  • DOI: 10.1021/acs.jpclett.5b00034

Disentangling protein and lipid interactions that control a molecular switch in photosynthetic light harvesting
journal, January 2017

  • Crisafi, Emanuela; Pandit, Anjali
  • Biochimica et Biophysica Acta (BBA) - Biomembranes, Vol. 1859, Issue 1
  • DOI: 10.1016/j.bbamem.2016.10.010

PsbS protein modulates non-photochemical chlorophyll fluorescence quenching in membranes depleted of photosystems
journal, November 2015


Nanodomains of Cytochrome b 6 f and Photosystem II Complexes in Spinach Grana Thylakoid Membranes
journal, July 2014

  • Johnson, Matthew P.; Vasilev, Cvetelin; Olsen, John D.
  • The Plant Cell, Vol. 26, Issue 7
  • DOI: 10.1105/tpc.114.127233

Phases and phase transitions of the phosphatidylcholines
journal, June 1998

  • Koynova, Rumiana; Caffrey, Martin
  • Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, Vol. 1376, Issue 1
  • DOI: 10.1016/S0304-4157(98)00006-9

Rapid Regulation of Light Harvesting and Plant Fitness in the Field
journal, July 2002


Photoprotective Energy Dissipation Involves the Reorganization of Photosystem II Light-Harvesting Complexes in the Grana Membranes of Spinach Chloroplasts
journal, April 2011

  • Johnson, Matthew P.; Goral, Tomasz K.; Duffy, Christopher D. P.
  • The Plant Cell, Vol. 23, Issue 4
  • DOI: 10.1105/tpc.110.081646

The role of energy losses in photosynthetic light harvesting
journal, June 2017

  • Krüger, T. P. J.; van Grondelle, R.
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 50, Issue 13
  • DOI: 10.1088/1361-6455/aa7583

Disentangling the low-energy states of the major light-harvesting complex of plants and their role in photoprotection
journal, July 2014

  • Krüger, Tjaart P. J.; Ilioaia, Cristian; Johnson, Matthew P.
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1837, Issue 7
  • DOI: 10.1016/j.bbabio.2014.02.014

Lipopolysaccharide-Induced Dynamic Lipid Membrane Reorganization: Tubules, Perforations, and Stacks
journal, June 2014

  • Adams, Peter G.; Lamoureux, Loreen; Swingle, Kirstie L.
  • Biophysical Journal, Vol. 106, Issue 11
  • DOI: 10.1016/j.bpj.2014.04.016

pH sensitivity of chlorophyll fluorescence quenching is determined by the detergent/protein ratio and the state of LHCII aggregation
journal, September 2014

  • Petrou, Katherina; Belgio, Erica; Ruban, Alexander V.
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1837, Issue 9
  • DOI: 10.1016/j.bbabio.2013.11.018

Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution
journal, February 2005

  • Standfuss, Jörg; Terwisscha van Scheltinga, Anke C.; Lamborghini, Matteo
  • The EMBO Journal, Vol. 24, Issue 5
  • DOI: 10.1038/sj.emboj.7600585

Carotenoid Cation Formation and the Regulation of Photosynthetic Light Harvesting
journal, January 2005


A pigment-binding protein essential for regulation of photosynthetic light harvesting
journal, January 2000

  • Li, Xiao-Ping; Björkman, Olle; Shih, Connie
  • Nature, Vol. 403, Issue 6768
  • DOI: 10.1038/35000131

The Use of Contact Mode Atomic Force Microscopy in Aqueous Medium for Structural Analysis of Spinach Photosynthetic Complexes
journal, July 2015

  • Phuthong, Witchukorn; Huang, Zubin; Wittkopp, Tyler M.
  • Plant Physiology, Vol. 169, Issue 2
  • DOI: 10.1104/pp.15.00706

Sensing and Responding to Excess Light
journal, June 2009


Multilayered Lipid Membrane Stacks for Biocatalysis Using Membrane Enzymes
journal, March 2017

  • Heath, George R.; Li, Mengqiu; Rong, Honling
  • Advanced Functional Materials, Vol. 27, Issue 17
  • DOI: 10.1002/adfm.201606265

Improving photosynthesis and crop productivity by accelerating recovery from photoprotection
journal, November 2016

  • Kromdijk, Johannes; Głowacka, Katarzyna; Leonelli, Lauriebeth
  • Science, Vol. 354, Issue 6314
  • DOI: 10.1126/science.aai8878

Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution
journal, March 2004

  • Liu, Zhenfeng; Yan, Hanchi; Wang, Kebin
  • Nature, Vol. 428, Issue 6980
  • DOI: 10.1038/nature02373

Architecture of a Charge-Transfer State Regulating Light Harvesting in a Plant Antenna Protein
journal, May 2008


Physical origins and models of energy transfer in photosynthetic light-harvesting
journal, January 2010

  • Novoderezhkin, Vladimir I.; van Grondelle, Rienk
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 27
  • DOI: 10.1039/c003025b

Lateral Segregation of Photosystem I in Cyanobacterial Thylakoids
journal, March 2017

  • MacGregor-Chatwin, Craig; Sener, Melih; Barnett, Samuel F. H.
  • The Plant Cell, Vol. 29, Issue 5
  • DOI: 10.1105/tpc.17.00071

Direct interaction of the major light-harvesting complex II and PsbS in nonphotochemical quenching
journal, March 2013

  • Wilk, L.; Grunwald, M.; Liao, P. -N.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 14
  • DOI: 10.1073/pnas.1205561110

The light-harvesting chlorophyll ab-binding proteins
journal, February 1994


Natural strategies for photosynthetic light harvesting
journal, June 2014

  • Croce, Roberta; van Amerongen, Herbert
  • Nature Chemical Biology, Vol. 10, Issue 7
  • DOI: 10.1038/nchembio.1555

Membrane biosensor platforms using nano- and microporous supports
journal, February 2008


Light harvesting in photosystem II
journal, April 2013


Identification and characterization of multiple emissive species in aggregated minor antenna complexes
journal, December 2016

  • Wahadoszamen, Md.; Belgio, Erica; Rahman, Md. Ashiqur
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1857, Issue 12
  • DOI: 10.1016/j.bbabio.2016.09.010

The nature of the air-cleaved mica surface
journal, June 2016


Comparison of the physical characteristics of chlorosomes from three different phyla of green phototrophic bacteria
journal, October 2013

  • Adams, Peter G.; Cadby, Ashley J.; Robinson, Benjamin
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1827, Issue 10
  • DOI: 10.1016/j.bbabio.2013.07.004

Three-Phase Coexistence in Lipid Membranes
journal, January 2017

  • Aufderhorst-Roberts, Anders; Chandra, Udayan; Connell, Simon D.
  • Biophysical Journal, Vol. 112, Issue 2
  • DOI: 10.1016/j.bpj.2016.12.025

Aggregation of Light-Harvesting Complex II leads to formation of efficient excitation energy traps in monomeric and trimeric complexes
journal, July 2007


Identification of a mechanism of photoprotective energy dissipation in higher plants
journal, November 2007

  • Ruban, Alexander V.; Berera, Rudi; Ilioaia, Cristian
  • Nature, Vol. 450, Issue 7169
  • DOI: 10.1038/nature06262

Polymer-supported membranes as models of the cell surface
journal, September 2005

  • Tanaka, Motomu; Sackmann, Erich
  • Nature, Vol. 437, Issue 7059, p. 656-663
  • DOI: 10.1038/nature04164

Light-harvesting processes in the dynamic photosynthetic antenna
journal, January 2013

  • Duffy, C. D. P.; Valkunas, L.; Ruban, A. V.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 43
  • DOI: 10.1039/c3cp51878g

Molecular basis of photoprotection and control of photosynthetic light-harvesting
journal, July 2005

  • Pascal, Andrew A.; Liu, Zhenfeng; Broess, Koen
  • Nature, Vol. 436, Issue 7047
  • DOI: 10.1038/nature03795

The nature of self-regulation in photosynthetic light-harvesting antenna
journal, April 2016

  • Chmeliov, Jevgenij; Gelzinis, Andrius; Songaila, Egidijus
  • Nature Plants, Vol. 2, Issue 5
  • DOI: 10.1038/nplants.2016.45

An Oxygen Scavenging System for Improvement of Dye Stability in Single-Molecule Fluorescence Experiments
journal, March 2008

  • Aitken, Colin Echeverría; Marshall, R. Andrew; Puglisi, Joseph D.
  • Biophysical Journal, Vol. 94, Issue 5
  • DOI: 10.1529/biophysj.107.117689

AFM studies of the supramolecular assembly of bacterial photosynthetic core-complexes
journal, October 2006


Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin
journal, October 1990


Solid supported lipid bilayers: From biophysical studies to sensor design
journal, November 2006


Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns
journal, May 2015

  • Adams, Peter G.; Swingle, Kirstie L.; Paxton, Walter F.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep10331

Singlet Energy Dissipation in the Photosystem II Light-Harvesting Complex Does Not Involve Energy Transfer to Carotenoids
journal, April 2010


Folding, Assembly, and Stability of the Major Light-Harvesting Complex of Higher Plants, LHCII, in the Presence of Native Lipids
journal, October 2000

  • Reinsberg, Dirk; Booth, Paula J.; Jegerschöld, Caroline
  • Biochemistry, Vol. 39, Issue 46
  • DOI: 10.1021/bi001365z

Singlet–Singlet Annihilation Kinetics in Aggregates and Trimers of LHCII
journal, May 2001


Energy-Dependent Quenching of Chlorophyll a Fluorescence in Isolated Chloroplasts
journal, December 1970


An In Vivo Quantitative Comparison of Photoprotection in Arabidopsis Xanthophyll Mutants
journal, June 2016

  • Ware, Maxwell A.; Dall’Osto, Luca; Ruban, Alexander V.
  • Frontiers in Plant Science, Vol. 7
  • DOI: 10.3389/fpls.2016.00841

3D-Membrane Stacks on Supported Membranes Composed of Diatom Lipids Induced by Long-Chain Polyamines
journal, September 2016


Simultaneous refolding of denatured PsbS and reconstitution with LHCII into liposomes of thylakoid lipids
journal, July 2015


The Functional Significance of the Monomeric and Trimeric States of the Photosystem II Light Harvesting Complexes
journal, December 2003

  • Wentworth, Mark; Ruban, Alexander V.; Horton, Peter
  • Biochemistry, Vol. 43, Issue 2
  • DOI: 10.1021/bi034975i

Dissipative pathways in the photosystem-II antenna in plants
journal, November 2015


Reversible Switching between Nonquenched and Quenched States in Nanoscale Linear Arrays of Plant Light-Harvesting Antenna Complexes
journal, July 2014

  • Vasilev, Cvetelin; Johnson, Matthew P.; Gonzales, Edward
  • Langmuir, Vol. 30, Issue 28
  • DOI: 10.1021/la501483s

Regulation of LHCII aggregation by different thylakoid membrane lipids
journal, March 2011

  • Schaller, Susann; Latowski, Dariusz; Jemioła-Rzemińska, Małgorzata
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1807, Issue 3
  • DOI: 10.1016/j.bbabio.2010.12.017