skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Non-radiative recombination at dislocations in InAs quantum dots grown on silicon

Abstract

We study the impact of misfit dislocations on the luminescence from InAs quantum dots (QDs) grown on Si substrates. Electron channeling contrast imaging is used together with cathodoluminescence mapping to locate misfit dislocations and characterize the resulting nonradiative recombination of carriers via near-infrared light emission profiles. With a 5 kV electron beam probe, the dark line defect width due to a typical misfit dislocation in a shallow QD active layer is found to be approximately 1 μm, with a 40%–50% peak emission intensity loss at room temperature. Importantly, we find that at cryogenic temperatures, the dislocations affect the QD ground state and the first excited state emission significantly less than the second excited state emission. At the same time, the dark line defect width, which partially relates to carrier diffusion in the system, is relatively constant across the temperature range of 10 K–300 K. Our results suggest that carrier dynamics in the QD wetting layer control emission intensity loss at dislocations, and that these defects reduce luminescence only at those temperatures where the probability of carriers thermalizing from the dots into the wetting layer becomes significant. We discuss the implications of these findings toward growing dislocation-tolerant, reliable quantum dot lasersmore » on silicon.« less

Authors:
 [1];  [1];  [2]; ORCiD logo [1];  [3];  [4]; ORCiD logo [1]
  1. Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, USA
  2. EAG Laboratories–Eurofins Materials Science, 628 Hutton St., Suite 103, Raleigh, North Carolina 27606, USA
  3. Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, USA; Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, USA
  4. Intel Corporation, Santa Clara, California 95054, USA
Publication Date:
Research Org.:
Columbia Univ., New York, NY (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1613736
Alternate Identifier(s):
OSTI ID: 1566273
Grant/Contract Number:  
AR0000843
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 115; Journal Issue: 13; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; Physics; Emission spectroscopy; Quantum dots; Luminescence; Electron beams; Lasers; Crystallographic defects; Epitaxy

Citation Formats

Selvidge, Jennifer, Norman, Justin, Salmon, Michael E., Hughes, Eamonn T., Bowers, John E., Herrick, Robert, and Mukherjee, Kunal. Non-radiative recombination at dislocations in InAs quantum dots grown on silicon. United States: N. p., 2019. Web. https://doi.org/10.1063/1.5113517.
Selvidge, Jennifer, Norman, Justin, Salmon, Michael E., Hughes, Eamonn T., Bowers, John E., Herrick, Robert, & Mukherjee, Kunal. Non-radiative recombination at dislocations in InAs quantum dots grown on silicon. United States. https://doi.org/10.1063/1.5113517
Selvidge, Jennifer, Norman, Justin, Salmon, Michael E., Hughes, Eamonn T., Bowers, John E., Herrick, Robert, and Mukherjee, Kunal. Mon . "Non-radiative recombination at dislocations in InAs quantum dots grown on silicon". United States. https://doi.org/10.1063/1.5113517. https://www.osti.gov/servlets/purl/1613736.
@article{osti_1613736,
title = {Non-radiative recombination at dislocations in InAs quantum dots grown on silicon},
author = {Selvidge, Jennifer and Norman, Justin and Salmon, Michael E. and Hughes, Eamonn T. and Bowers, John E. and Herrick, Robert and Mukherjee, Kunal},
abstractNote = {We study the impact of misfit dislocations on the luminescence from InAs quantum dots (QDs) grown on Si substrates. Electron channeling contrast imaging is used together with cathodoluminescence mapping to locate misfit dislocations and characterize the resulting nonradiative recombination of carriers via near-infrared light emission profiles. With a 5 kV electron beam probe, the dark line defect width due to a typical misfit dislocation in a shallow QD active layer is found to be approximately 1 μm, with a 40%–50% peak emission intensity loss at room temperature. Importantly, we find that at cryogenic temperatures, the dislocations affect the QD ground state and the first excited state emission significantly less than the second excited state emission. At the same time, the dark line defect width, which partially relates to carrier diffusion in the system, is relatively constant across the temperature range of 10 K–300 K. Our results suggest that carrier dynamics in the QD wetting layer control emission intensity loss at dislocations, and that these defects reduce luminescence only at those temperatures where the probability of carriers thermalizing from the dots into the wetting layer becomes significant. We discuss the implications of these findings toward growing dislocation-tolerant, reliable quantum dot lasers on silicon.},
doi = {10.1063/1.5113517},
journal = {Applied Physics Letters},
number = 13,
volume = 115,
place = {United States},
year = {2019},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

High performance continuous wave 1.3  μ m quantum dot lasers on silicon
journal, January 2014

  • Liu, Alan Y.; Zhang, Chong; Norman, Justin
  • Applied Physics Letters, Vol. 104, Issue 4
  • DOI: 10.1063/1.4863223

All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001)
journal, January 2018

  • Kwoen, Jinkwan; Jang, Bongyong; Lee, Joohang
  • Optics Express, Vol. 26, Issue 9
  • DOI: 10.1364/OE.26.011568

Accommodation of Misfit Across the Interface Between Crystals of Semiconducting Elements or Compounds
journal, August 1970

  • Matthews, J. W.; Mader, S.; Light, T. B.
  • Journal of Applied Physics, Vol. 41, Issue 9
  • DOI: 10.1063/1.1659510

Radiation Enhanced Dislocation Glide and Rapid Degradation
journal, January 1990


Recent Advances in InAs Quantum Dot Lasers Grown on On-Axis (001) Silicon by Molecular Beam Epitaxy
journal, December 2018

  • Jung, Daehwan; Norman, Justin; Wan, Yating
  • physica status solidi (a), Vol. 216, Issue 1
  • DOI: 10.1002/pssa.201800602

Room‐temperature continuous operation of pn Al x Ga 1− x As‐GaAs quantum well heterostructure lasers grown on Si
journal, August 1987

  • Deppe, D. G.; Holonyak, N.; Nam, D. W.
  • Applied Physics Letters, Vol. 51, Issue 9
  • DOI: 10.1063/1.98371

Fermi-dirac and random carrier distributions in quantum dot lasers
journal, January 2014

  • Hutchings, M.; O'Driscoll, I.; Smowton, P. M.
  • Applied Physics Letters, Vol. 104, Issue 3
  • DOI: 10.1063/1.4862813

Photonic Integration With Epitaxial III–V on Silicon
journal, November 2018

  • Liu, Alan Y.; Bowers, John
  • IEEE Journal of Selected Topics in Quantum Electronics, Vol. 24, Issue 6
  • DOI: 10.1109/JSTQE.2018.2854542

Femtosecond pulse generation in passively mode locked InAs quantum dot lasers
journal, September 2013

  • Finch, P.; Blood, P.; Smowton, P. M.
  • Applied Physics Letters, Vol. 103, Issue 13
  • DOI: 10.1063/1.4822433

Lateral carrier diffusion and surface recombination in InGaAs/AlGaAs quantum‐well ridge‐waveguide lasers
journal, October 1994

  • Hu, S. Y.; Corzine, S. W.; Law, K. ‐K.
  • Journal of Applied Physics, Vol. 76, Issue 8
  • DOI: 10.1063/1.357279

Physical Origin of the Optical Degradation of InAs Quantum Dot Lasers
journal, June 2019

  • Buffolo, Matteo; Samparisi, Fabio; De Santi, Carlo
  • IEEE Journal of Quantum Electronics, Vol. 55, Issue 3
  • DOI: 10.1109/JQE.2019.2909963

Degradation of GaAs lasers grown by metalorganic chemical vapor deposition on Si substrates
journal, July 1987

  • van der Ziel, J. P.; Dupuis, R. D.; Logan, R. A.
  • Applied Physics Letters, Vol. 51, Issue 2
  • DOI: 10.1063/1.98997

Lateral carrier confinement in miniature lasers using quantum dots
journal, May 2000

  • Kim, J. K.; Naone, R. L.; Coldren, L. A.
  • IEEE Journal of Selected Topics in Quantum Electronics, Vol. 6, Issue 3
  • DOI: 10.1109/2944.865105

Exciton dynamics probe the energy structure of a quantum dot-in-a-well system: The role of Coulomb attraction and dimensionality
journal, June 2015


Realization of GaAs/AlGaAs Lasers on Si Substrates Using Epitaxial Lateral Overgrowth by Metalorganic Chemical Vapor Deposition
journal, August 2001

  • Kazi, Zaman Iqbal; Thilakan, Periyasamy; Egawa, Takashi
  • Japanese Journal of Applied Physics, Vol. 40, Issue Part 1, No. 8
  • DOI: 10.1143/JJAP.40.4903

Carrier diffusion in low-dimensional semiconductors: A comparison of quantum wells, disordered quantum wells, and quantum dots
journal, November 2004


Electronic structure and energy relaxation in strained InAs/GaAs quantum pyramids
journal, March 1996

  • Grundmann, M.; Heitz, R.; Ledentsov, N.
  • Superlattices and Microstructures, Vol. 19, Issue 2
  • DOI: 10.1006/spmi.1996.0011

What is the real value of diffusion length in GaN?
journal, April 2015


Plastic relaxation and relaxed buffer layers for semiconductor epitaxy
journal, April 1996


Theory of random population for quantum dots
journal, April 1997


Structural analysis of life tested 1.3 μm quantum dot lasers
journal, January 2008

  • Beanland, R.; Sánchez, A. M.; Childs, D.
  • Journal of Applied Physics, Vol. 103, Issue 1
  • DOI: 10.1063/1.2827451

Dislocation filters in GaAs on Si
journal, October 2015


Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers
journal, January 2003

  • Groenert, Michael E.; Leitz, Christopher W.; Pitera, Arthur J.
  • Journal of Applied Physics, Vol. 93, Issue 1
  • DOI: 10.1063/1.1525865

Direct observation of recombination-enhanced dislocation glide in heteroepitaxial GaAs on silicon
journal, August 2018


Reliability of InAs/GaAs Quantum Dot Lasers Epitaxially Grown on Silicon
journal, November 2015

  • Liu, Alan Y.; Herrick, Robert W.; Ueda, Osamu
  • IEEE Journal of Selected Topics in Quantum Electronics, Vol. 21, Issue 6
  • DOI: 10.1109/JSTQE.2015.2418226

Influence of misfit dislocations on thermal quenching of luminescence in In x Ga 1− x As/GaAs multiple quantum wells
journal, December 1995

  • Rammohan, K.; Lin, H. T.; Rich, D. H.
  • Journal of Applied Physics, Vol. 78, Issue 11
  • DOI: 10.1063/1.360491

Defect reduction effects in GaAs on Si substrates by thermal annealing
journal, December 1988

  • Yamaguchi, Masafumi; Yamamoto, Akio; Tachikawa, Masami
  • Applied Physics Letters, Vol. 53, Issue 23
  • DOI: 10.1063/1.100257

Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate
journal, June 2011


Quantum dot lasers for silicon photonics [Invited]
journal, January 2015

  • Liu, Alan Y.; Srinivasan, Sudharsanan; Norman, Justin
  • Photonics Research, Vol. 3, Issue 5
  • DOI: 10.1364/PRJ.3.0000B1

Cathodoluminescence evidence of the relative position of As(g) and Ga(g) dislocation-related energy bands in gallium arsenide
journal, August 1993


Random Population of Quantum Dots in InAs–GaAs Laser Structures
journal, April 2010

  • O'Driscoll, Ian; Blood, Peter; Smowton, Peter M.
  • IEEE Journal of Quantum Electronics, Vol. 46, Issue 4
  • DOI: 10.1109/JQE.2009.2039198

Dislocation filtering: why it works, when it doesn’t
journal, June 1990

  • Dodson, Brian W.
  • Journal of Electronic Materials, Vol. 19, Issue 6
  • DOI: 10.1007/BF02651270

The measured dependence of the lateral ambipolar diffusion length on carrier injection-level in Stranski-Krastanov quantum dot devices
journal, August 2010

  • Naidu, D.; Smowton, P. M.; Summers, H. D.
  • Journal of Applied Physics, Vol. 108, Issue 4
  • DOI: 10.1063/1.3471812

Recent progress in lasers on silicon
journal, July 2010


Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si
journal, April 2018

  • Jung, Daehwan; Herrick, Robert; Norman, Justin
  • Applied Physics Letters, Vol. 112, Issue 15
  • DOI: 10.1063/1.5026147

Rapid degradation phenomenon in heterojunction GaAlAs–GaAs lasers
journal, September 1974

  • Petroff, P.; Hartman, R. L.
  • Journal of Applied Physics, Vol. 45, Issue 9
  • DOI: 10.1063/1.1663883

Carrier thermal escape and retrapping in self-assembled quantum dots
journal, September 1999


Low threading dislocation density GaAs growth on on-axis GaP/Si (001)
journal, December 2017

  • Jung, Daehwan; Callahan, Patrick G.; Shin, Bongki
  • Journal of Applied Physics, Vol. 122, Issue 22
  • DOI: 10.1063/1.5001360

Origin of defect tolerance in InAs/GaAs quantum dot lasers grown on silicon
journal, January 2019


Carrier migration in structures with InAs quantum dots
journal, August 2003

  • Popescu, Dan P.; Eliseev, Peter G.; Stintz, Andreas
  • Journal of Applied Physics, Vol. 94, Issue 4
  • DOI: 10.1063/1.1594816

Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities
journal, January 2012


Electrically pumped continuous-wave III–V quantum dot lasers on silicon
journal, March 2016


Reliability of Hybrid Silicon Distributed Feedback Lasers
journal, July 2013

  • Srinivasan, S.; Julian, N.; Peters, J.
  • IEEE Journal of Selected Topics in Quantum Electronics, Vol. 19, Issue 4
  • DOI: 10.1109/JSTQE.2013.2240438

Direct determination of the ambipolar diffusion length in GaAs/AlGaAs heterostructures by cathodoluminescence
journal, October 1989

  • Zarem, H. A.; Sercel, P. C.; Lebens, J. A.
  • Applied Physics Letters, Vol. 55, Issue 16
  • DOI: 10.1063/1.102226

Electronic and optical properties of strained quantum dots modeled by 8-band k⋅p theory
journal, February 1999