skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nucleation in aqueous NaCl solutions shifts from 1-step to 2-step mechanism on crossing the spinodal

Abstract

Here, we use large-scale molecular dynamics simulations coupled to free energy calculations to identify for the first time a limit of stability (spinodal) and a change in the nucleation mechanism in aqueous NaCl solutions. This is a system of considerable atmospheric, geological, and technical significance. We find that the supersaturated metastable NaCl solution reaches its limit of stability at sufficiently high salt concentrations, as indicated by the composition dependence of the salt chemical potential, indicating the transition to a phase separation by spinodal decomposition. However, the metastability limit of the NaCl solution does not correspond to spinodal decomposition with respect to crystallization. We find that beyond this spinodal, a liquid/amorphous separation occurs in the aqueous solution, whereby the ions first form disordered clusters. We term these clusters as “amorphous salt.” We also identify a transition from one- to two-step crystallization mechanism driven by a spinodal. In particular, crystallization from aqueous NaCl solution beyond the spinodal is a two-step process, in which the ions first phase-separate into disordered amorphous salt clusters, followed by the crystallization of ions in the amorphous salt phase. By contrast, in the aqueous NaCl solution at concentrations lower than the spinodal, crystallization occurs via a one-step processmore » as the ions aggregate directly into crystalline nuclei. The change of mechanism with increasing supersaturation underscores the importance of an accurate determination of the driving force for phase separation. The study has broader implications on the mechanism for nucleation of crystals from solutions at high supersaturations.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]
  1. Univ. of Pennsylvania, Philadelphia, PA (United States)
  2. Princeton Univ., NJ (United States)
Publication Date:
Research Org.:
Princeton Univ., NJ (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1610630
Alternate Identifier(s):
OSTI ID: 1503939
Grant/Contract Number:  
SC0002128
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 150; Journal Issue: 12; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; chemistry; physics

Citation Formats

Jiang, Hao, Debenedetti, Pablo G., and Panagiotopoulos, Athanassios Z. Nucleation in aqueous NaCl solutions shifts from 1-step to 2-step mechanism on crossing the spinodal. United States: N. p., 2019. Web. doi:10.1063/1.5084248.
Jiang, Hao, Debenedetti, Pablo G., & Panagiotopoulos, Athanassios Z. Nucleation in aqueous NaCl solutions shifts from 1-step to 2-step mechanism on crossing the spinodal. United States. doi:10.1063/1.5084248.
Jiang, Hao, Debenedetti, Pablo G., and Panagiotopoulos, Athanassios Z. Fri . "Nucleation in aqueous NaCl solutions shifts from 1-step to 2-step mechanism on crossing the spinodal". United States. doi:10.1063/1.5084248. https://www.osti.gov/servlets/purl/1610630.
@article{osti_1610630,
title = {Nucleation in aqueous NaCl solutions shifts from 1-step to 2-step mechanism on crossing the spinodal},
author = {Jiang, Hao and Debenedetti, Pablo G. and Panagiotopoulos, Athanassios Z.},
abstractNote = {Here, we use large-scale molecular dynamics simulations coupled to free energy calculations to identify for the first time a limit of stability (spinodal) and a change in the nucleation mechanism in aqueous NaCl solutions. This is a system of considerable atmospheric, geological, and technical significance. We find that the supersaturated metastable NaCl solution reaches its limit of stability at sufficiently high salt concentrations, as indicated by the composition dependence of the salt chemical potential, indicating the transition to a phase separation by spinodal decomposition. However, the metastability limit of the NaCl solution does not correspond to spinodal decomposition with respect to crystallization. We find that beyond this spinodal, a liquid/amorphous separation occurs in the aqueous solution, whereby the ions first form disordered clusters. We term these clusters as “amorphous salt.” We also identify a transition from one- to two-step crystallization mechanism driven by a spinodal. In particular, crystallization from aqueous NaCl solution beyond the spinodal is a two-step process, in which the ions first phase-separate into disordered amorphous salt clusters, followed by the crystallization of ions in the amorphous salt phase. By contrast, in the aqueous NaCl solution at concentrations lower than the spinodal, crystallization occurs via a one-step process as the ions aggregate directly into crystalline nuclei. The change of mechanism with increasing supersaturation underscores the importance of an accurate determination of the driving force for phase separation. The study has broader implications on the mechanism for nucleation of crystals from solutions at high supersaturations.},
doi = {10.1063/1.5084248},
journal = {Journal of Chemical Physics},
number = 12,
volume = 150,
place = {United States},
year = {2019},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Molecular Dynamics Study of the Early Stages of Calcium Carbonate Growth
journal, August 2009

  • Tribello, Gareth A.; Bruneval, Fabien; Liew, CheeChin
  • The Journal of Physical Chemistry B, Vol. 113, Issue 34
  • DOI: 10.1021/jp902606x

Nucleation of NaCl from Aqueous Solution: Critical Sizes, Ion-Attachment Kinetics, and Rates
journal, October 2015

  • Zimmermann, Nils E. R.; Vorselaars, Bart; Quigley, David
  • Journal of the American Chemical Society, Vol. 137, Issue 41
  • DOI: 10.1021/jacs.5b08098

Molecular simulation of thermodynamic and transport properties for the H 2 O+NaCl system
journal, December 2014

  • Orozco, Gustavo A.; Moultos, Othonas A.; Jiang, Hao
  • The Journal of Chemical Physics, Vol. 141, Issue 23
  • DOI: 10.1063/1.4903928

Nucleation of Crystals from Solution: Classical and Two-Step Models
journal, May 2009

  • Erdemir, Deniz; Lee, Alfred Y.; Myerson, Allan S.
  • Accounts of Chemical Research, Vol. 42, Issue 5
  • DOI: 10.1021/ar800217x

Temperature-dependent formation of NaCl dihydrate in levitated NaCl and sea salt aerosol particles
journal, December 2016

  • Peckhaus, Andreas; Kiselev, Alexei; Wagner, Robert
  • The Journal of Chemical Physics, Vol. 145, Issue 24
  • DOI: 10.1063/1.4972589

Nucleation barriers in tetrahedral liquids spanning glassy and crystallizing regimes
journal, September 2011

  • Saika-Voivod, Ivan; Romano, Flavio; Sciortino, Francesco
  • The Journal of Chemical Physics, Vol. 135, Issue 12
  • DOI: 10.1063/1.3638046

Amorphous precursors of crystallization during spinodal decomposition
journal, February 2011


A simulation study of homogeneous ice nucleation in supercooled salty water
journal, June 2018

  • Soria, Guiomar D.; Espinosa, Jorge R.; Ramirez, Jorge
  • The Journal of Chemical Physics, Vol. 148, Issue 22
  • DOI: 10.1063/1.5008889

Communication: Nucleation rates of supersaturated aqueous NaCl using a polarizable force field
journal, October 2018

  • Jiang, Hao; Debenedetti, Pablo G.; Panagiotopoulos, Athanassios Z.
  • The Journal of Chemical Physics, Vol. 149, Issue 14
  • DOI: 10.1063/1.5053652

Thermodynamic properties of a symmetrical binary mixture in the coexistence region
journal, December 2011


Numerical prediction of absolute crystallization rates in hard-sphere colloids
journal, February 2004

  • Auer, S.; Frenkel, D.
  • The Journal of Chemical Physics, Vol. 120, Issue 6
  • DOI: 10.1063/1.1638740

Microscopic Evidence for Liquid-Liquid Separation in Supersaturated CaCO3 Solutions
journal, August 2013


New method to analyze simulations of activated processes
journal, April 2007

  • Wedekind, Jan; Strey, Reinhard; Reguera, David
  • The Journal of Chemical Physics, Vol. 126, Issue 13
  • DOI: 10.1063/1.2713401

Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations
journal, January 2015

  • Mester, Zoltan; Panagiotopoulos, Athanassios Z.
  • The Journal of Chemical Physics, Vol. 142, Issue 4
  • DOI: 10.1063/1.4906320

Recent progress in molecular simulation of aqueous electrolytes: force fields, chemical potentials and solubility
journal, March 2016


NaCl nucleation from brine in seeded simulations: Sources of uncertainty in rate estimates
journal, June 2018

  • Zimmermann, Nils. E. R.; Vorselaars, Bart; Espinosa, Jorge R.
  • The Journal of Chemical Physics, Vol. 148, Issue 22
  • DOI: 10.1063/1.5024009

Nucleation from Solution
journal, August 2013


Direct calculation of ice homogeneous nucleation rate for a molecular model of water
journal, August 2015

  • Haji-Akbari, Amir; Debenedetti, Pablo G.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 34
  • DOI: 10.1073/pnas.1509267112

Phase transitions in fluctuations and their role in two-step nucleation
journal, February 2019

  • James, Daniella; Beairsto, Seamus; Hartt, Carmen
  • The Journal of Chemical Physics, Vol. 150, Issue 7
  • DOI: 10.1063/1.5057429

Molecular-dynamics simulations of urea nucleation from aqueous solution
journal, December 2014

  • Salvalaglio, Matteo; Perego, Claudio; Giberti, Federico
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 1
  • DOI: 10.1073/pnas.1421192111

Interplay between two phase transitions: Crystallization and liquid-liquid phase separation in a polyolefin blend
journal, July 2006

  • Zhang, Xiaohua; Wang, Zhigang; Dong, Xia
  • The Journal of Chemical Physics, Vol. 125, Issue 2
  • DOI: 10.1063/1.2208997

A Review of Classical and Nonclassical Nucleation Theories
journal, October 2016

  • Karthika, S.; Radhakrishnan, T. K.; Kalaichelvi, P.
  • Crystal Growth & Design, Vol. 16, Issue 11
  • DOI: 10.1021/acs.cgd.6b00794

Stable prenucleation mineral clusters are liquid-like ionic polymers
journal, September 2011

  • Demichelis, Raffaella; Raiteri, Paolo; Gale, Julian D.
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1604

More than one pathway
journal, March 2013


On the calculation of solubilities via direct coexistence simulations: Investigation of NaCl aqueous solutions and Lennard-Jones binary mixtures
journal, October 2016

  • Espinosa, J. R.; Young, J. M.; Jiang, H.
  • The Journal of Chemical Physics, Vol. 145, Issue 15
  • DOI: 10.1063/1.4964725

Crystallization of a binary Lennard-Jones mixture
journal, March 2011

  • Jungblut, Swetlana; Dellago, Christoph
  • The Journal of Chemical Physics, Vol. 134, Issue 10
  • DOI: 10.1063/1.3556664

Theory of spinodal decomposition assisted crystallization in binary mixtures
journal, May 2010

  • Mitra, Mithun K.; Muthukumar, M.
  • The Journal of Chemical Physics, Vol. 132, Issue 18
  • DOI: 10.1063/1.3425774

Solution crystallisation via a submerged liquid–liquid phase boundary: oiling out
journal, February 2003

  • Bonnett, P. E.; Carpenter, K. J.; Dawson, S.
  • Chemical Communications, Issue 6
  • DOI: 10.1039/b212062c

The evaporation/condensation transition of liquid droplets
journal, March 2004

  • MacDowell, Luis G.; Virnau, Peter; Müller, Marcus
  • The Journal of Chemical Physics, Vol. 120, Issue 11
  • DOI: 10.1063/1.1645784

In situ observations of liquid–liquid phase separation in aqueous MgSO4 solutions: Geological and geochemical implications
journal, February 2013


Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions
journal, January 2018

  • Jiang, Hao; Haji-Akbari, Amir; Debenedetti, Pablo G.
  • The Journal of Chemical Physics, Vol. 148, Issue 4
  • DOI: 10.1063/1.5016554

Multistep nucleation of nanocrystals in aqueous solution
journal, October 2016

  • Loh, N. Duane; Sen, Soumyo; Bosman, Michel
  • Nature Chemistry, Vol. 9, Issue 1
  • DOI: 10.1038/nchem.2618

Statistical theory of nucleation, condensation and coagulation
journal, July 1976


Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations
journal, May 2016


Crystallization of Lennard-Jones nanodroplets: From near melting to deeply supercooled
journal, March 2015

  • Malek, Shahrazad M. A.; Morrow, Gregory P.; Saika-Voivod, Ivan
  • The Journal of Chemical Physics, Vol. 142, Issue 12
  • DOI: 10.1063/1.4915917

Hybrid Monte Carlo with LAMMPS
journal, May 2018

  • Guo, Jingxiang; Haji-Akbari, Amir; Palmer, Jeremy C.
  • Journal of Theoretical and Computational Chemistry, Vol. 17, Issue 03
  • DOI: 10.1142/s0219633618400023

How Crystals Nucleate and Grow in Aqueous NaCl Solution
journal, January 2013

  • Chakraborty, Debashree; Patey, G. N.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 4
  • DOI: 10.1021/jz302065w

Enhancement of Protein Crystal Nucleation by Critical Density Fluctuations
journal, September 1997


Temperature-dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations
journal, July 2015

  • Mester, Zoltan; Panagiotopoulos, Athanassios Z.
  • The Journal of Chemical Physics, Vol. 143, Issue 4
  • DOI: 10.1063/1.4926840

Birth of NaCl Crystals: Insights from Molecular Simulations
journal, August 2016


Bond-orientational order in liquids and glasses
journal, July 1983

  • Steinhardt, Paul J.; Nelson, David R.; Ronchetti, Marco
  • Physical Review B, Vol. 28, Issue 2
  • DOI: 10.1103/physrevb.28.784

Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process
journal, March 2000


Promotion of Homogeneous Ice Nucleation by Soluble Molecules
journal, November 2017

  • Mochizuki, Kenji; Qiu, Yuqing; Molinero, Valeria
  • Journal of the American Chemical Society, Vol. 139, Issue 47
  • DOI: 10.1021/jacs.7b09549

Kinetic Reconstruction of the Free-Energy Landscape
journal, September 2008

  • Wedekind, Jan; Reguera, David
  • The Journal of Physical Chemistry B, Vol. 112, Issue 35
  • DOI: 10.1021/jp804014h

Simulations of the nucleation of AgBr from solution
journal, October 2000

  • Shore, Joel D.; Perchak, Dennis; Shnidman, Yitzhak
  • The Journal of Chemical Physics, Vol. 113, Issue 15
  • DOI: 10.1063/1.1308517

Phase Diagram of Colloidal Solutions
journal, December 1996


The two-step mechanism of nucleation of crystals in solution
journal, January 2010


The thermodynamics of calcite nucleation at organic interfaces: Classical vs. non-classical pathways
journal, January 2012

  • Hu, Q.; Nielsen, M. H.; Freeman, C. L.
  • Faraday Discussions, Vol. 159
  • DOI: 10.1039/c2fd20124k

Frustration vs Prenucleation: Understanding the Surprising Stability of Supersaturated Sodium Thiosulfate Solutions
journal, July 2018

  • Reichenbach, Judith; Wynne, Klaas
  • The Journal of Physical Chemistry B, Vol. 122, Issue 30
  • DOI: 10.1021/acs.jpcb.8b04112

Microscopic Mechanism and Kinetics of Ice Formation at Complex Interfaces: Zooming in on Kaolinite
journal, June 2016

  • Sosso, Gabriele C.; Li, Tianshu; Donadio, Davide
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 13
  • DOI: 10.1021/acs.jpclett.6b01013

Salt Crystallization from an Evaporating Aqueous Solution by Molecular Dynamics Simulations
journal, August 2003

  • Mucha, Martin; Jungwirth, Pavel
  • The Journal of Physical Chemistry B, Vol. 107, Issue 33
  • DOI: 10.1021/jp034461t

The influence of ion hydration on nucleation and growth of LiF crystals in aqueous solution
journal, January 2018

  • Lanaro, G.; Patey, G. N.
  • The Journal of Chemical Physics, Vol. 148, Issue 2
  • DOI: 10.1063/1.5001521

Molecular Simulation of Aqueous Electrolyte Solubility. 3. Alkali-Halide Salts and Their Mixtures in Water and in Hydrochloric Acid
journal, April 2012

  • Moučka, Filip; Lísal, Martin; Smith, William R.
  • The Journal of Physical Chemistry B, Vol. 116, Issue 18
  • DOI: 10.1021/jp301447z

Computer Simulation of Crystallization from Solution
journal, September 1998

  • Anwar, Jamshed; Boateng, Papa Kofi
  • Journal of the American Chemical Society, Vol. 120, Issue 37
  • DOI: 10.1021/ja972750n

Molecular force fields for aqueous electrolytes: SPC/E-compatible charged LJ sphere models and their limitations
journal, April 2013

  • Moučka, Filip; Nezbeda, Ivo; Smith, William R.
  • The Journal of Chemical Physics, Vol. 138, Issue 15
  • DOI: 10.1063/1.4801322

Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations
journal, July 2008

  • Joung, In Suk; Cheatham, Thomas E.
  • The Journal of Physical Chemistry B, Vol. 112, Issue 30
  • DOI: 10.1021/jp8001614

Urea homogeneous nucleation mechanism is solvent dependent
journal, January 2015

  • Salvalaglio, Matteo; Mazzotti, Marco; Parrinello, Michele
  • Faraday Discussions, Vol. 179
  • DOI: 10.1039/c4fd00235k

Observing classical nucleation theory at work by monitoring phase transitions with molecular precision
journal, December 2014

  • Sleutel, Mike; Lutsko, Jim; Van Driessche, Alexander E. S.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6598

A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate
journal, January 2012

  • Bewernitz, Mark A.; Gebauer, Denis; Long, Joanna
  • Faraday Discussions, Vol. 159
  • DOI: 10.1039/c2fd20080e

The missing term in effective pair potentials
journal, November 1987

  • Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P.
  • The Journal of Physical Chemistry, Vol. 91, Issue 24
  • DOI: 10.1021/j100308a038

Test of classical nucleation theory and mean first-passage time formalism on crystallization in the Lennard-Jones liquid
journal, January 2009

  • Lundrigan, Sarah E. M.; Saika-Voivod, Ivan
  • The Journal of Chemical Physics, Vol. 131, Issue 10
  • DOI: 10.1063/1.3216867

    Works referencing / citing this record:

    Entropic colloidal crystallization pathways via fluid–fluid transitions and multidimensional prenucleation motifs
    journal, July 2019

    • Lee, Sangmin; Teich, Erin G.; Engel, Michael
    • Proceedings of the National Academy of Sciences, Vol. 116, Issue 30
    • DOI: 10.1073/pnas.1905929116