DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Instability-enhanced transport in low temperature magnetized plasma

Abstract

It is shown that the transport in low temperature, collisional, bound plasma is enhanced by instabilities at a high magnetic field. While the magnetic field confines the electrons in a stable plasma, the instability completely destroys the confinement such that the transport becomes independent of the magnetic field in the highly magnetized limit. Finally, an analytical expression of the instability-enhanced collision frequency is proposed, based on a magnetic field independent edge-to-center density ratio.

Authors:
 [1]; ORCiD logo [1];  [2];  [1]
  1. Ecole Polytechnique, Palaiseau (France)
  2. Univ. of California, Berkeley, CA (United States)
Publication Date:
Research Org.:
Univ. of Michigan, Ann Arbor, MI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES)
OSTI Identifier:
1610604
Alternate Identifier(s):
OSTI ID: 1542545
Grant/Contract Number:  
SC0001939
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 26; Journal Issue: 7; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; physics

Citation Formats

Lucken, R., Bourdon, A., Lieberman, M. A., and Chabert, P. Instability-enhanced transport in low temperature magnetized plasma. United States: N. p., 2019. Web. doi:10.1063/1.5094422.
Lucken, R., Bourdon, A., Lieberman, M. A., & Chabert, P. Instability-enhanced transport in low temperature magnetized plasma. United States. https://doi.org/10.1063/1.5094422
Lucken, R., Bourdon, A., Lieberman, M. A., and Chabert, P. Mon . "Instability-enhanced transport in low temperature magnetized plasma". United States. https://doi.org/10.1063/1.5094422. https://www.osti.gov/servlets/purl/1610604.
@article{osti_1610604,
title = {Instability-enhanced transport in low temperature magnetized plasma},
author = {Lucken, R. and Bourdon, A. and Lieberman, M. A. and Chabert, P.},
abstractNote = {It is shown that the transport in low temperature, collisional, bound plasma is enhanced by instabilities at a high magnetic field. While the magnetic field confines the electrons in a stable plasma, the instability completely destroys the confinement such that the transport becomes independent of the magnetic field in the highly magnetized limit. Finally, an analytical expression of the instability-enhanced collision frequency is proposed, based on a magnetic field independent edge-to-center density ratio.},
doi = {10.1063/1.5094422},
journal = {Physics of Plasmas},
number = 7,
volume = 26,
place = {United States},
year = {2019},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Electron density and norm of the electron flux at 91 μs [(b) and (d)] and averaged over the last 27 μs of the simulation [(a) and (c)]. In (c), the spiral streamlines represent the electron flux. The data come from a 3 mTorr, 20mT LPPic simulation.

Save / Share:

Works referenced in this record:

Cross-field diffusion in low-temperature plasma discharges of finite length
journal, October 2014


Fundamentals of Plasma Physics
journal, January 2007


Theory for the anomalous electron transport in Hall effect thrusters. II. Kinetic model
journal, May 2016

  • Lafleur, T.; Baalrud, S. D.; Chabert, P.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4948496

Generalized two‐fluid theory of nonlinear magnetic structures
journal, September 1994

  • Schep, T. J.; Pegoraro, F.; Kuvshinov, B. N.
  • Physics of Plasmas, Vol. 1, Issue 9
  • DOI: 10.1063/1.870523

On the Bohm criterion in the presence of a magnetic field
journal, August 2017


Marginal stability, characteristic frequencies, and growth rates of gradient drift modes in partially magnetized plasmas with finite electron temperature
journal, January 2018

  • Lakhin, V. P.; Ilgisonis, V. I.; Smolyakov, A. I.
  • Physics of Plasmas, Vol. 25, Issue 1
  • DOI: 10.1063/1.4996719

Bohm Criterion in a Magnetized Plasma Sheath
journal, October 2011


Transition from flute modes to drift waves in a magnetized plasma column
journal, June 2005

  • Brochard, F.; Gravier, E.; Bonhomme, G.
  • Physics of Plasmas, Vol. 12, Issue 6
  • DOI: 10.1063/1.1921167

Experimental investigation of electron transport across a magnetic field barrier in electropositive and electronegative plasmas
journal, June 2016


2D particle-in-cell simulations of the electron drift instability and associated anomalous electron transport in Hall-effect thrusters
journal, February 2017

  • Croes, Vivien; Lafleur, Trevor; Bonaventura, Zdeněk
  • Plasma Sources Science and Technology, Vol. 26, Issue 3
  • DOI: 10.1088/1361-6595/aa550f

Plasma transport across magnetic field lines in low-temperature plasma sources
journal, November 2011


Stability and Transport in Magnetic Confinement Systems
book, January 2012


Fundamentals of Plasma Physics
journal, December 1981


Excitation of drift instabilities in thermionic plasmas
journal, January 1965

  • Chen, F. F.
  • Journal of Nuclear Energy. Part C, Plasma Physics, Accelerators, Thermonuclear Research, Vol. 7, Issue 4
  • DOI: 10.1088/0368-3281/7/4/305

The Bohm criterion and sheath formation
journal, April 1991


Rotating Instability in Low-Temperature Magnetized Plasmas
journal, October 2013


Collisional Effects in Plasmas-Drift-Wave Experiments and Interpretation
journal, March 1967


Edge-to-center plasma density ratios in two-dimensional plasma discharges
journal, March 2018

  • Lucken, R.; Croes, V.; Lafleur, T.
  • Plasma Sources Science and Technology, Vol. 27, Issue 3
  • DOI: 10.1088/1361-6595/aaaf61

Effects of finite electron temperature on gradient drift instabilities in partially magnetized plasmas
journal, January 2018

  • Lakhin, V. P.; Ilgisonis, V. I.; Smolyakov, A. I.
  • Physics of Plasmas, Vol. 25, Issue 1
  • DOI: 10.1063/1.4996708

The application of scattering cross sections to ion flux models in discharge sheaths
journal, July 1994

  • Phelps, A. V.
  • Journal of Applied Physics, Vol. 76, Issue 2
  • DOI: 10.1063/1.357820

Two-dimensional equilibrium of a low temperature magnetized plasma
journal, February 2005

  • Fruchtman, A.; Makrinich, G.; Ashkenazy, J.
  • Plasma Sources Science and Technology, Vol. 14, Issue 1
  • DOI: 10.1088/0963-0252/14/1/017

A General Theory of the Plasma of an Arc
journal, September 1929


Theory of resistive modes in the ballooning representation
journal, April 1986


``Universal'' Overstability of a Resistive, Inhomogeneous Plasma
journal, January 1965


Ambipolar Diffusion in a Magnetic Field
journal, April 1955


The Resistive-Wall Amplifier
journal, July 1953


Transverse Kelvin-Helmholtz Instability in a Rotating Plasma
journal, January 1969


Magnetic field effects on gas discharge plasmas
journal, June 2006

  • Sternberg, Natalia; Godyak, Valery; Hoffman, Daniel
  • Physics of Plasmas, Vol. 13, Issue 6
  • DOI: 10.1063/1.2214537

Ambipolar Diffusion in a Magnetic Field
journal, January 1965


Low-frequency instabilities in a laboratory magnetized plasma column
journal, February 2004

  • Gravier, E.; Brochard, F.; Bonhomme, G.
  • Physics of Plasmas, Vol. 11, Issue 2
  • DOI: 10.1063/1.1636479

Plasma Physics via Computer Simulation
book, January 1991


Plasma physics via computer simulation
journal, September 1986


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.