DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Spatio-temporal dynamics of pulsed gas breakdown in microgaps

Abstract

Microscale gas breakdown plays a critical role in microplasma generation for numerous applications and device lifetime for miniaturized electronics. This communication extends a previous investigation of pulsed breakdown morphology [G. Meng et al., Phys. Plasmas 25, 082116 (2018)] by providing further insight into the spatio-temporal dynamics of pulsed gas breakdown for different gap distances using an in-situ electrical-optical measurement method. Time-resolved sequential images and the corresponding photon number distributions are obtained to demonstrate the dynamic evolution of the breakdown channel morphology and the ionization intensity during breakdown development. For a 15 μm gap, breakdown transitions from a spot area on both electrode surfaces to a broad discharge region comprised of filamentary main breakdown channel (~2.00 μm) and surrounding weak ionization area due to the local field enhancement. For a 2 μm gap, it transitions from a thin channel (~1.09 μm) to a wider and uniform channel (~2.14 μm) because the electric field is more uniform at smaller gaps. Interestingly, the main breakdown channel width at the instant of breakdown is independent of the gap width. For the 2 μm gap, field emission dominates the initial stage of breakdown and collision ionization (α process) dominates during breakdown development, while the Townsendmore » avalanche dominates the breakdown process for the 15 μm gap. Finally, we apply a simple asymptotic theory to quantify the relative contribution of these phenomena and predict that breakdown will follow Paschen's law for gaps larger than 17.8 μm.« less

Authors:
ORCiD logo [1];  [1];  [2];  [1];  [1]; ORCiD logo [3]; ORCiD logo [2]; ORCiD logo [1]
  1. Xi'an Jiaotong Univ. (China)
  2. Purdue Univ., West Lafayette, IN (United States)
  3. Michigan State Univ., East Lansing, MI (United States)
Publication Date:
Research Org.:
Univ. of Michigan, Ann Arbor, MI (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Natural Science Foundation of China (NSFC); China Postdoctoral Science Foundation; Research Foundation of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect; US Department of the Navy, Office of Naval Research (ONR); US Air Force Office of Scientific Research (AFOSR)
OSTI Identifier:
1610601
Grant/Contract Number:  
SC0001939; 51607138; 51521065; 2016M602820; SKLIPR.1512; N00014-17-1-2702; FA9550-18-1-0062
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 26; Journal Issue: 1; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; physics

Citation Formats

Meng, Guodong, Ying, Qi, Loveless, Amanda M., Wu, Feihong, Wang, Kejing, Fu, Yangyang, Garner, Allen L., and Cheng, Yonghong. Spatio-temporal dynamics of pulsed gas breakdown in microgaps. United States: N. p., 2019. Web. doi:10.1063/1.5081009.
Meng, Guodong, Ying, Qi, Loveless, Amanda M., Wu, Feihong, Wang, Kejing, Fu, Yangyang, Garner, Allen L., & Cheng, Yonghong. Spatio-temporal dynamics of pulsed gas breakdown in microgaps. United States. https://doi.org/10.1063/1.5081009
Meng, Guodong, Ying, Qi, Loveless, Amanda M., Wu, Feihong, Wang, Kejing, Fu, Yangyang, Garner, Allen L., and Cheng, Yonghong. Thu . "Spatio-temporal dynamics of pulsed gas breakdown in microgaps". United States. https://doi.org/10.1063/1.5081009. https://www.osti.gov/servlets/purl/1610601.
@article{osti_1610601,
title = {Spatio-temporal dynamics of pulsed gas breakdown in microgaps},
author = {Meng, Guodong and Ying, Qi and Loveless, Amanda M. and Wu, Feihong and Wang, Kejing and Fu, Yangyang and Garner, Allen L. and Cheng, Yonghong},
abstractNote = {Microscale gas breakdown plays a critical role in microplasma generation for numerous applications and device lifetime for miniaturized electronics. This communication extends a previous investigation of pulsed breakdown morphology [G. Meng et al., Phys. Plasmas 25, 082116 (2018)] by providing further insight into the spatio-temporal dynamics of pulsed gas breakdown for different gap distances using an in-situ electrical-optical measurement method. Time-resolved sequential images and the corresponding photon number distributions are obtained to demonstrate the dynamic evolution of the breakdown channel morphology and the ionization intensity during breakdown development. For a 15 μm gap, breakdown transitions from a spot area on both electrode surfaces to a broad discharge region comprised of filamentary main breakdown channel (~2.00 μm) and surrounding weak ionization area due to the local field enhancement. For a 2 μm gap, it transitions from a thin channel (~1.09 μm) to a wider and uniform channel (~2.14 μm) because the electric field is more uniform at smaller gaps. Interestingly, the main breakdown channel width at the instant of breakdown is independent of the gap width. For the 2 μm gap, field emission dominates the initial stage of breakdown and collision ionization (α process) dominates during breakdown development, while the Townsend avalanche dominates the breakdown process for the 15 μm gap. Finally, we apply a simple asymptotic theory to quantify the relative contribution of these phenomena and predict that breakdown will follow Paschen's law for gaps larger than 17.8 μm.},
doi = {10.1063/1.5081009},
journal = {Physics of Plasmas},
number = 1,
volume = 26,
place = {United States},
year = {Thu Jan 31 00:00:00 EST 2019},
month = {Thu Jan 31 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Scaling laws for gas breakdown for nanoscale to microscale gaps at atmospheric pressure
journal, June 2016

  • Loveless, Amanda M.; Garner, Allen L.
  • Applied Physics Letters, Vol. 108, Issue 23
  • DOI: 10.1063/1.4953202

Deviations from the Paschen's law at short gap distances from 100 nm to 10  μ m in air and nitrogen
journal, September 2014

  • Peschot, A.; Bonifaci, N.; Lesaint, O.
  • Applied Physics Letters, Vol. 105, Issue 12
  • DOI: 10.1063/1.4895630

20 years of microplasma research: a status report
journal, February 2016


Gas discharge physics
journal, August 1993


Gas breakdown in atmospheric pressure microgaps with a surface protrusion on the cathode
journal, June 2018

  • Fu, Yangyang; Zhang, Peng; Verboncoeur, John P.
  • Applied Physics Letters, Vol. 112, Issue 25
  • DOI: 10.1063/1.5037688

Atmospheric-pressure gas breakdown from 2 to 100 MHz
journal, December 2008

  • Walsh, J. L.; Zhang, Y. T.; Iza, F.
  • Applied Physics Letters, Vol. 93, Issue 22
  • DOI: 10.1063/1.3043449

Energy and force prediction for a nanosecond pulsed dielectric barrier discharge actuator
journal, May 2012

  • Wang, Chin-Cheng; Roy, Subrata
  • Journal of Applied Physics, Vol. 111, Issue 10
  • DOI: 10.1063/1.4722202

Temporal and spatial emission behaviour of homogeneous dielectric barrier discharge driven by unipolar sub-microsecond square pulses
journal, March 2006


Electron Emission in Intense Electric Fields
journal, May 1928

  • Fowler, R. H.; Nordheim, L.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 119, Issue 781
  • DOI: 10.1098/rspa.1928.0091

Microplasmas, a platform technology for a plethora of plasma applications
journal, August 2017


Pulse-driven magnetostatic micro-actuator array based on ultrasoft elastomeric membranes for active surface applications
journal, August 2012


Time-resolved imaging of the electrical breakdown of planar microelectrode gap in atmospheric air
journal, June 2017


In-situ optical observation of dynamic breakdown process across microgaps at atmospheric pressure
journal, August 2018

  • Meng, Guodong; Cheng, Yonghong; Gao, Xinyu
  • IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 25, Issue 4
  • DOI: 10.1109/TDEI.2018.007017

Particle-in-cell modeling of the nanosecond field emission driven discharge in pressurized hydrogen
journal, February 2018

  • Levko, Dmitry; Yatom, Shurik; Krasik, Yakov E.
  • Journal of Applied Physics, Vol. 123, Issue 8
  • DOI: 10.1063/1.5021129

Breakdown phenomena of gas‐insulated gaps with nanosecond pulses
journal, January 1989

  • Kawada, Yukimitsu; Hosokawa, Tatsuzo
  • Journal of Applied Physics, Vol. 65, Issue 1
  • DOI: 10.1063/1.343374

Gas Discharge Physics
book, January 1991


Generation of Atmospheric Pressure Transient Glow Discharge in Microgap Electrode with Nanosecond Pulsed Voltage
journal, January 2007

  • Ibuka, Shinji; Mikami, Ryo; Furuya, Fumitaka
  • IEEJ Transactions on Fundamentals and Materials, Vol. 127, Issue 7
  • DOI: 10.1541/ieejfms.127.411

Numerical simulation of anomaleous electrons generation in a vacuum diode
journal, August 2011

  • Levko, D.; Gurovich, V. Tz.; Krasik, Ya. E.
  • Journal of Applied Physics, Vol. 110, Issue 4
  • DOI: 10.1063/1.3624963

Impact Behavior and Energy Transfer Efficiency of Pulse-Driven Bent-Beam Electrothermal Actuators
journal, February 2006

  • Shimamura, Y.; Udeshi, K.; Que, L.
  • Journal of Microelectromechanical Systems, Vol. 15, Issue 1
  • DOI: 10.1109/JMEMS.2005.863696

Frequency response of atmospheric pressure gas breakdown in micro/nanogaps
journal, August 2013

  • Semnani, Abbas; Venkattraman, Ayyaswamy; Alexeenko, Alina A.
  • Applied Physics Letters, Vol. 103, Issue 6
  • DOI: 10.1063/1.4817978

Nottingham Effect in Field and T F Emission: Heating and Cooling Domains, and Inversion Temperature
journal, September 1964


Sensitivity of modeled microscale gas breakdown voltage due to parametric variation
journal, October 2018

  • Dynako, Samuel D.; Loveless, Amanda M.; Garner, Allen L.
  • Physics of Plasmas, Vol. 25, Issue 10
  • DOI: 10.1063/1.5042270

Demonstration of field emission driven microscale gas breakdown for pulsed voltages using in-situ optical imaging
journal, August 2018

  • Meng, Guodong; Gao, Xinyu; Loveless, Amanda M.
  • Physics of Plasmas, Vol. 25, Issue 8
  • DOI: 10.1063/1.5046335

Electric field enhancement due to a saw-tooth asperity in a channel and implications on microscale gas breakdown
journal, September 2014


Microscale gas breakdown: ion-enhanced field emission and the modified Paschen’s curve
journal, November 2014


Mechanism of electrical breakdown of gases for pressures from 10 −9 to 1 bar and inter-electrode gaps from 0.1 to 0.5 mm
journal, August 2007

  • Osmokrovic, P.; Vujisic, M.; Stankovic, K.
  • Plasma Sources Science and Technology, Vol. 16, Issue 3
  • DOI: 10.1088/0963-0252/16/3/025

Simulation of ion generation and breakdown in atmospheric air
journal, December 2004

  • Zhang, W.; Fisher, T. S.; Garimella, S. V.
  • Journal of Applied Physics, Vol. 96, Issue 11
  • DOI: 10.1063/1.1806264

Comparison Study of Spatiotemporally Resolved Emissions of Nanosecond Pulsed Microplasma Jets
journal, March 2018

  • Song, Shutong; Lane, Jamie; Jiang, Chunqi
  • IEEE Transactions on Plasma Science, Vol. 46, Issue 3
  • DOI: 10.1109/TPS.2018.2795958

Pre-breakdown evaluation of gas discharge mechanisms in microgaps
journal, April 2013

  • Semnani, Abbas; Venkattraman, Ayyaswamy; Alexeenko, Alina A.
  • Applied Physics Letters, Vol. 102, Issue 17
  • DOI: 10.1063/1.4803179

Diffuse discharge, runaway electron, and x-ray in atmospheric pressure air in an inhomogeneous electrical field in repetitive pulsed modes
journal, January 2011

  • Tarasenko, Victor F.; Baksht, Evgenii Kh.; Burahenko, Alexander G.
  • Applied Physics Letters, Vol. 98, Issue 2
  • DOI: 10.1063/1.3540504

Nanosecond‐pulse breakdown of gas‐insulated gaps
journal, March 1988

  • Kawada, Yukimitsu; Shamoto, Sumikazu; Hosokawa, Tatsuzo
  • Journal of Applied Physics, Vol. 63, Issue 6
  • DOI: 10.1063/1.339885

Generalization of Microdischarge Scaling Laws for All Gases at Atmospheric Pressure
journal, April 2017

  • Loveless, Amanda M.; Garner, Allen L.
  • IEEE Transactions on Plasma Science, Vol. 45, Issue 4
  • DOI: 10.1109/TPS.2017.2647988

A universal theory for gas breakdown from microscale to the classical Paschen law
journal, November 2017

  • Loveless, Amanda M.; Garner, Allen L.
  • Physics of Plasmas, Vol. 24, Issue 11
  • DOI: 10.1063/1.5004654

Nanosecond-Pulsed Dielectric Barrier Discharge Plasma Actuator for Airflow Control Along an NACA0015 Airfoil at High Reynolds Number
journal, November 2016

  • Moreau, Eric; Debien, Antoine; Benard, Nicolas
  • IEEE Transactions on Plasma Science, Vol. 44, Issue 11
  • DOI: 10.1109/TPS.2016.2603226

Mechanism of electrical breakdown of gases at very low pressure and interelectrode gap values
journal, January 1993

  • Osmokrovic, P.
  • IEEE Transactions on Plasma Science, Vol. 21, Issue 6
  • DOI: 10.1109/27.256784

Nanosecond Pulsed Plasma Brush for Bacterial Inactivation on Laminate
journal, July 2017

  • Neuber, Johanna Ursula; Song, Shutong; Malik, Muhammad Arif
  • IEEE Transactions on Radiation and Plasma Medical Sciences, Vol. 1, Issue 4
  • DOI: 10.1109/TRPMS.2017.2697760

Works referencing / citing this record:

Electrical breakdown from macro to micro/nano scales: a tutorial and a review of the state of the art
journal, February 2020

  • Fu, Yangyang; Zhang, Peng; Verboncoeur, John P.
  • Plasma Research Express, Vol. 2, Issue 1
  • DOI: 10.1088/2516-1067/ab6c84

The Transition to Paschen’s Law for Microscale Gas Breakdown at Subatmospheric Pressure
journal, April 2019