DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Entropic colloidal crystallization pathways via fluid–fluid transitions and multidimensional prenucleation motifs

Abstract

Complex crystallization pathways are common in protein crystallization, tetrahedrally coordinated systems, and biomineralization, where single or multiple precursors temporarily appear before the formation of the crystal. The emergence of precursors is often explained by a unique property of the system, such as short-range attraction, directional bonding, or ion association. But, structural characteristics of the prenucleation phases found in multistep crystallization remain unclear, and models are needed for testing and expanding the understanding of fluid-to-solid ordering pathways. Here, we report 3 instances of 2-step crystallization of hard-particle fluids. Crystallization in these systems proceeds via a high-density precursor fluid phase with prenucleation motifs in the form of clusters, fibers and layers, and networks, respectively. The density and diffusivity change across the fluid–fluid phase transition increases with motif dimension. We observe crystal nucleation to be catalyzed by the interface between the 2 fluid phases. The crystals that form are complex, including, notably, a crystal with 432 particles in the cubic unit cell. Finally, our results establish the existence of complex crystallization pathways in entropic systems and reveal prenucleation motifs of various dimensions.

Authors:
ORCiD logo [1];  [1];  [2];  [1]
  1. Univ. of Michigan, Ann Arbor, MI (United States)
  2. Univ. of Michigan, Ann Arbor, MI (United States); Friedrich-Alexander Univ. Erlangen-Nurnberg (Germany)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Bio-Inspired Energy Science (CBES); Northwestern Univ., Evanston, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); DGE 1256260; ACI-1053575
OSTI Identifier:
1610454
Grant/Contract Number:  
SC0000989; DMR 1409620
Resource Type:
Accepted Manuscript
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 116; Journal Issue: 30; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; colloidal crystallization; 2-step crystallization; fluid-fluid phase transitions; liquid-liquid phase; transition; entropic crystallization

Citation Formats

Lee, Sangmin, Teich, Erin G., Engel, Michael, and Glotzer, Sharon C. Entropic colloidal crystallization pathways via fluid–fluid transitions and multidimensional prenucleation motifs. United States: N. p., 2019. Web. doi:10.1073/pnas.1905929116.
Lee, Sangmin, Teich, Erin G., Engel, Michael, & Glotzer, Sharon C. Entropic colloidal crystallization pathways via fluid–fluid transitions and multidimensional prenucleation motifs. United States. https://doi.org/10.1073/pnas.1905929116
Lee, Sangmin, Teich, Erin G., Engel, Michael, and Glotzer, Sharon C. Mon . "Entropic colloidal crystallization pathways via fluid–fluid transitions and multidimensional prenucleation motifs". United States. https://doi.org/10.1073/pnas.1905929116. https://www.osti.gov/servlets/purl/1610454.
@article{osti_1610454,
title = {Entropic colloidal crystallization pathways via fluid–fluid transitions and multidimensional prenucleation motifs},
author = {Lee, Sangmin and Teich, Erin G. and Engel, Michael and Glotzer, Sharon C.},
abstractNote = {Complex crystallization pathways are common in protein crystallization, tetrahedrally coordinated systems, and biomineralization, where single or multiple precursors temporarily appear before the formation of the crystal. The emergence of precursors is often explained by a unique property of the system, such as short-range attraction, directional bonding, or ion association. But, structural characteristics of the prenucleation phases found in multistep crystallization remain unclear, and models are needed for testing and expanding the understanding of fluid-to-solid ordering pathways. Here, we report 3 instances of 2-step crystallization of hard-particle fluids. Crystallization in these systems proceeds via a high-density precursor fluid phase with prenucleation motifs in the form of clusters, fibers and layers, and networks, respectively. The density and diffusivity change across the fluid–fluid phase transition increases with motif dimension. We observe crystal nucleation to be catalyzed by the interface between the 2 fluid phases. The crystals that form are complex, including, notably, a crystal with 432 particles in the cubic unit cell. Finally, our results establish the existence of complex crystallization pathways in entropic systems and reveal prenucleation motifs of various dimensions.},
doi = {10.1073/pnas.1905929116},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 30,
volume = 116,
place = {United States},
year = {Mon Jul 08 00:00:00 EDT 2019},
month = {Mon Jul 08 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 34 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Categorization of 2-step nucleation pathways. Two-step nucleation pathways are mediated by precursors that can be categorized by the dimension of the prenucleation motif. We distinguish in our simulations of 3 different systems clusters (zero-dimensional motif), fibers (one-dimensional) and layers (2D), and networks (3D), respectively. The dimension of themore » motif is a direct consequence of geometrical frustration that builds up as prenucleation motifs grow (27).« less

Save / Share:

Works referenced in this record:

Prediction of absolute crystal-nucleation rate in hard-sphere colloids
journal, February 2001

  • Auer, Stefan; Frenkel, Daan
  • Nature, Vol. 409, Issue 6823
  • DOI: 10.1038/35059035

General purpose molecular dynamics simulations fully implemented on graphics processing units
journal, May 2008

  • Anderson, Joshua A.; Lorenz, Chris D.; Travesset, A.
  • Journal of Computational Physics, Vol. 227, Issue 10
  • DOI: 10.1016/j.jcp.2008.01.047

Real-Space Imaging of Nucleation and Growth in Colloidal Crystallization
journal, April 2001


Surface-induced crystallization in supercooled tetrahedral liquids
journal, August 2009

  • Li, Tianshu; Donadio, Davide; Ghiringhelli, Luca M.
  • Nature Materials, Vol. 8, Issue 9
  • DOI: 10.1038/nmat2508

Understanding shape entropy through local dense packing
text, January 2013


Metastable liquid–liquid transition in a molecular model of water
journal, June 2014

  • Palmer, Jeremy C.; Martelli, Fausto; Liu, Yang
  • Nature, Vol. 510, Issue 7505
  • DOI: 10.1038/nature13405

High Pressure Synthesis and Structure of a Novel Clathrate-Type Compound: Te7+xSi20-x (x ≈ 2.5).
journal, December 2003

  • Jaussaud, Nicolas; Pouchard, Michel; Goglio, Graziella
  • ChemInform, Vol. 34, Issue 50
  • DOI: 10.1002/chin.200350004

The role of prenucleation clusters in surface-induced calcium phosphate crystallization
journal, November 2010

  • Dey, Archan; Bomans, Paul H. H.; Müller, Frank A.
  • Nature Materials, Vol. 9, Issue 12
  • DOI: 10.1038/nmat2900

Role of Liquid Polymorphism during the Crystallization of Silicon
journal, March 2011

  • Desgranges, Caroline; Delhommelle, Jerome
  • Journal of the American Chemical Society, Vol. 133, Issue 9
  • DOI: 10.1021/ja1117478

Amorphous Precursors in the Nucleation of Clathrate Hydrates
journal, July 2010

  • Jacobson, Liam C.; Hujo, Waldemar; Molinero, Valeria
  • Journal of the American Chemical Society, Vol. 132, Issue 33
  • DOI: 10.1021/ja1051445

Nucleation in aqueous NaCl solutions shifts from 1-step to 2-step mechanism on crossing the spinodal
journal, March 2019

  • Jiang, Hao; Debenedetti, Pablo G.; Panagiotopoulos, Athanassios Z.
  • The Journal of Chemical Physics, Vol. 150, Issue 12
  • DOI: 10.1063/1.5084248

Crystalline Assemblies and Densest Packings of a Family of Truncated Tetrahedra and the Role of Directional Entropic Forces
journal, November 2011

  • Damasceno, Pablo F.; Engel, Michael; Glotzer, Sharon C.
  • ACS Nano, Vol. 6, Issue 1
  • DOI: 10.1021/nn204012y

Liquid–liquid phase transition in supercooled silicon
journal, October 2003

  • Sastry, Srikanth; Austen Angell, C.
  • Nature Materials, Vol. 2, Issue 11
  • DOI: 10.1038/nmat994

Crystallization by particle attachment in synthetic, biogenic, and geologic environments
journal, July 2015

  • De Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N. A. J. M.
  • Science, Vol. 349, Issue 6247
  • DOI: 10.1126/science.aaa6760

Clathrate colloidal crystals
journal, March 2017


Generic mechanism for generating a liquid–liquid phase transition
journal, February 2001

  • Franzese, Giancarlo; Malescio, Gianpietro; Skibinsky, Anna
  • Nature, Vol. 409, Issue 6821
  • DOI: 10.1038/35055514

Order through entropy
journal, December 2014


Erasing no-man’s land by thermodynamically stabilizing the liquid–liquid transition in tetrahedral particles
journal, July 2014

  • Smallenburg, Frank; Filion, Laura; Sciortino, Francesco
  • Nature Physics, Vol. 10, Issue 9
  • DOI: 10.1038/nphys3030

Stable Prenucleation Calcium Carbonate Clusters
journal, December 2008


Microscopic Evidence for Liquid-Liquid Separation in Supersaturated CaCO3 Solutions
journal, August 2013


The liquid protein phase in crystallization: a case study—intact immunoglobulins
journal, November 2001

  • Kuznetsov, Yurii G.; Malkin, Alexander J.; McPherson, Alexander
  • Journal of Crystal Growth, Vol. 232, Issue 1-4
  • DOI: 10.1016/S0022-0248(01)01058-2

Observation of two-step nucleation in methane hydrates
journal, January 2010

  • Vatamanu, Jenel; Kusalik, Peter G.
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 45
  • DOI: 10.1039/c0cp00551g

Monte Carlo simulations of amphiphilic nanoparticle self-assembly
journal, November 2008

  • Davis, Jonathan R.; Panagiotopoulos, Athanassios Z.
  • The Journal of Chemical Physics, Vol. 129, Issue 19
  • DOI: 10.1063/1.3009183

Geometrical frustration yields fibre formation in self-assembly
journal, July 2017

  • Lenz, Martin; Witten, Thomas A.
  • Nature Physics, Vol. 13, Issue 11
  • DOI: 10.1038/nphys4184

Understanding shape entropy through local dense packing
journal, October 2014

  • van Anders, Greg; Klotsa, Daphne; Ahmed, N. Khalid
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 45
  • DOI: 10.1073/pnas.1418159111

Computational investigation of surface freezing in a molecular model of water
journal, March 2017

  • Haji-Akbari, Amir; Debenedetti, Pablo G.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 13
  • DOI: 10.1073/pnas.1620999114

Self-Assembly in Two Dimensions: Surface Micelles and Domain Formation in Monolayers
journal, October 1994


The relationship between liquid, supercooled and glassy water
journal, November 1998

  • Mishima, Osamu; Stanley, H. Eugene
  • Nature, Vol. 396, Issue 6709
  • DOI: 10.1038/24540

Strong scaling of general-purpose molecular dynamics simulations on GPUs
journal, July 2015

  • Glaser, Jens; Nguyen, Trung Dac; Anderson, Joshua A.
  • Computer Physics Communications, Vol. 192
  • DOI: 10.1016/j.cpc.2015.02.028

A Diversity of Assembly Mechanisms of a Generic Amyloid Fold
journal, July 2011


Methane Clathrate Hydrate Nucleation Mechanism by Advanced Molecular Simulations
journal, September 2014

  • Lauricella, Marco; Meloni, Simone; English, Niall J.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 40
  • DOI: 10.1021/jp5052479

Phase transitions in fluctuations and their role in two-step nucleation
journal, February 2019

  • James, Daniella; Beairsto, Seamus; Hartt, Carmen
  • The Journal of Chemical Physics, Vol. 150, Issue 7
  • DOI: 10.1063/1.5057429

High pressure synthesis and structure of a novel clathrate-type compound: Te7+xSi20−x (x∼2.5)
journal, September 2003


Predictive Self-Assembly of Polyhedra into Complex Structures
journal, July 2012


Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides
journal, November 2004

  • Nguyen, H. D.; Hall, C. K.
  • Proceedings of the National Academy of Sciences, Vol. 101, Issue 46
  • DOI: 10.1073/pnas.0407273101

The crystal structure of the metallic phase Mg32(Al, Zn)49
journal, April 1957


Spinodal decomposition of a symmetric critical mixture of deuterated and protonated polymer
journal, September 1989

  • Bates, Frank S.; Wiltzius, Pierre
  • The Journal of Chemical Physics, Vol. 91, Issue 5
  • DOI: 10.1063/1.456901

Dense Liquid Precursor for the Nucleation of Ordered Solid Phases from Solution
journal, July 2004


Scalable Metropolis Monte Carlo for simulation of hard shapes
journal, July 2016

  • Anderson, Joshua A.; Eric Irrgang, M.; Glotzer, Sharon C.
  • Computer Physics Communications, Vol. 204
  • DOI: 10.1016/j.cpc.2016.02.024

Enhancement of Protein Crystal Nucleation by Critical Density Fluctuations
journal, September 1997


Tuning the Liquid-Liquid Transition by Modulating the Hydrogen-Bond Angular Flexibility in a Model for Water
journal, July 2015


Works referencing / citing this record:

Two-step crystallization and solid–solid transitions in binary colloidal mixtures
journal, October 2020

  • Fang, Huang; Hagan, Michael F.; Rogers, W. Benjamin
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 45
  • DOI: 10.1073/pnas.2008561117

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.