The nature and source of solar magnetic phenomena
Abstract
The heliosphere appears to be powered by coaxial helicity injection from a negative helicity injector in the northern hemisphere and a positive one in the southern hemisphere. The injector magnetic flux for both is the measured solar polar magnetic flux, and the injector voltage is generated by a simple dynamo effect due to the differential rotation of the solar surface with the polar magnetic flux. The dynamo current is estimated from the solar motion that it causes. This current also appears to sustain a thin, shallow global magnetic structure over most of the solar surface that has the form of a 1D minimum energy state. The current channel appears to be destroyed and reformed every 11 years. The currents and magnetic fields reverse in this solar cycle. A brief discussion of surface phenomena observed during this cycle is given. Plasma self-organization is briefly discussed and used in this analysis of solar data. The magnetic phenomena discussed include torsional oscillations, the heat source for the chromosphere and the corona, filaments, meridional flow, the solar cycle, sunspots, CMEs, and flares.
- Authors:
-
- Univ. of Washington, Seattle, WA (United States)
- Publication Date:
- Research Org.:
- Univ. of Washington, Seattle, WA (United States)
- Sponsoring Org.:
- USDOE Office of Science (SC), Fusion Energy Sciences (FES)
- OSTI Identifier:
- 1610327
- Alternate Identifier(s):
- OSTI ID: 1560782
- Grant/Contract Number:
- FG02-96ER54361; SC0016256
- Resource Type:
- Accepted Manuscript
- Journal Name:
- Physics of Plasmas
- Additional Journal Information:
- Journal Volume: 26; Journal Issue: 9; Journal ID: ISSN 1070-664X
- Publisher:
- American Institute of Physics (AIP)
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; Physics; Solar wind; Solar activity; Stellar structure and properties; Solar plasma; Heliosphere; Solar magnetic fields
Citation Formats
Jarboe, T. R., Benedett, T. E., Everson, C. J., Hansen, C. J., Hossack, A. C., Morgan, K. D., Nelson, B. A., O'Bryan, J. B., Penna, J. M., and Sutherland, D. A. The nature and source of solar magnetic phenomena. United States: N. p., 2019.
Web. doi:10.1063/1.5087613.
Jarboe, T. R., Benedett, T. E., Everson, C. J., Hansen, C. J., Hossack, A. C., Morgan, K. D., Nelson, B. A., O'Bryan, J. B., Penna, J. M., & Sutherland, D. A. The nature and source of solar magnetic phenomena. United States. https://doi.org/10.1063/1.5087613
Jarboe, T. R., Benedett, T. E., Everson, C. J., Hansen, C. J., Hossack, A. C., Morgan, K. D., Nelson, B. A., O'Bryan, J. B., Penna, J. M., and Sutherland, D. A. Mon .
"The nature and source of solar magnetic phenomena". United States. https://doi.org/10.1063/1.5087613. https://www.osti.gov/servlets/purl/1610327.
@article{osti_1610327,
title = {The nature and source of solar magnetic phenomena},
author = {Jarboe, T. R. and Benedett, T. E. and Everson, C. J. and Hansen, C. J. and Hossack, A. C. and Morgan, K. D. and Nelson, B. A. and O'Bryan, J. B. and Penna, J. M. and Sutherland, D. A.},
abstractNote = {The heliosphere appears to be powered by coaxial helicity injection from a negative helicity injector in the northern hemisphere and a positive one in the southern hemisphere. The injector magnetic flux for both is the measured solar polar magnetic flux, and the injector voltage is generated by a simple dynamo effect due to the differential rotation of the solar surface with the polar magnetic flux. The dynamo current is estimated from the solar motion that it causes. This current also appears to sustain a thin, shallow global magnetic structure over most of the solar surface that has the form of a 1D minimum energy state. The current channel appears to be destroyed and reformed every 11 years. The currents and magnetic fields reverse in this solar cycle. A brief discussion of surface phenomena observed during this cycle is given. Plasma self-organization is briefly discussed and used in this analysis of solar data. The magnetic phenomena discussed include torsional oscillations, the heat source for the chromosphere and the corona, filaments, meridional flow, the solar cycle, sunspots, CMEs, and flares.},
doi = {10.1063/1.5087613},
journal = {Physics of Plasmas},
number = 9,
volume = 26,
place = {United States},
year = {2019},
month = {9}
}
Works referenced in this record:
The Current State of Solar Modeling
journal, May 1996
- Christensen-Dalsgaard, J.; Dappen, W.; Ajukov, S. V.
- Science, Vol. 272, Issue 5266
Evershed Clouds as Precursors of Moving Magnetic Features around Sunspots
journal, September 2006
- Cabrera Solana, D.; Rubio, L. R. Bellot; Beck, C.
- The Astrophysical Journal, Vol. 649, Issue 1
On Solving the Coronal Heating Problem
journal, March 2006
- Klimchuk, James A.
- Solar Physics, Vol. 234, Issue 1
Structure and Evolution of Supergranulation from Local Helioseismology
journal, July 2008
- Hirzberger, Johann; Gizon, Laurent; Solanki, Sami K.
- Solar Physics, Vol. 251, Issue 1-2
The Solar Cycle
journal, March 2010
- Hathaway, David H.
- Living Reviews in Solar Physics, Vol. 7, Issue 1
Energy confinement and magnetic field generation in the SSPX spheromak
journal, May 2008
- Hudson, B.; Wood, R. D.; McLean, H. S.
- Physics of Plasmas, Vol. 15, Issue 5
Solar Wind Outflow and the Chromospheric Magnetic Network
journal, February 1999
- Hassler, D. M.
- Science, Vol. 283, Issue 5403
Additional Evidence Supporting a Model of Shallow, High-Speed Supergranulation
journal, April 2014
- Duvall, T. L.; Hanasoge, S. M.; Chakraborty, S.
- Solar Physics, Vol. 289, Issue 9
The Topology of the Sun's Magnetic Field and the 22-YEAR Cycle.
journal, March 1961
- Babcock, H. W.
- The Astrophysical Journal, Vol. 133
The heliospheric current sheet
journal, August 2001
- Smith, Edward J.
- Journal of Geophysical Research: Space Physics, Vol. 106, Issue A8
The plasma transport equations derived by multiple time‐scale expansions. II. An application
journal, April 1995
- Edenstrasser, J. W.; Kassab, M. M. M.
- Physics of Plasmas, Vol. 2, Issue 4
Sustained spheromaks with ideal n = 1 kink stability and pressure confinement
journal, August 2014
- Victor, B. S.; Jarboe, T. R.; Hansen, C. J.
- Physics of Plasmas, Vol. 21, Issue 8, Article No. 082504
Magnitudes and timescales of total solar irradiance variability
journal, January 2016
- Kopp, Greg
- Journal of Space Weather and Space Climate, Vol. 6
The Magnetic Polarity of Sun-Spots
journal, January 1919
- Hale, George E.; Ellerman, Ferdinand; Nicholson, S. B.
- The Astrophysical Journal, Vol. 49
Relaxation and magnetic reconnection in plasmas
journal, July 1986
- Taylor, J. B.
- Reviews of Modern Physics, Vol. 58, Issue 3
A Magneto-Kinematic Model of the Solar Cycle
journal, April 1969
- Leighton, Robert B.
- The Astrophysical Journal, Vol. 156
The Solar Magnetograph.
journal, September 1953
- Babcock, Horace W.
- The Astrophysical Journal, Vol. 118
Space Physics: Solar Flares . A Monograph from Skylab Solar Workshop II. Peter A. Sturrock, Ed. Colorado Associated University Press, Boulder, 1980. x, 514 pp., illus. $17.50.
journal, May 1980
- Hyder, Charles L.
- Science, Vol. 208, Issue 4443
The impedance and energy efficiency of a coaxial magnetized plasma source used for spheromak formation and sustainment
journal, August 1990
- Barnes, Cris W.; Jarboe, T. R.; Marklin, G. J.
- Physics of Fluids B: Plasma Physics, Vol. 2, Issue 8
Theoretical values of convective turnover times and Rossby numbers for solar-like, pre-main sequence stars
journal, February 2010
- Landin, N. R.; Mendes, L. T. S.; Vaz, L. P. R.
- Astronomy and Astrophysics, Vol. 510
The solar magnetic field since 1700: I. Characteristics of sunspot group emergence and reconstruction of the butterfly diagram
journal, March 2011
- Jiang, J.; Cameron, R. H.; Schmitt, D.
- Astronomy & Astrophysics, Vol. 528
The solar magnetic field since 1700: II. Physical reconstruction of total, polar and open flux
journal, March 2011
- Jiang, J.; Cameron, R. H.; Schmitt, D.
- Astronomy & Astrophysics, Vol. 528
IN SITU HEATING OF THE 2007 MAY 19 CME EJECTA DETECTED BY STEREO /PLASTIC AND ACE
journal, March 2011
- Rakowski, Cara E.; Laming, J. Martin; Lyutikov, Maxim
- The Astrophysical Journal, Vol. 730, Issue 1
Rotation of Doppler features in the solar photosphere
journal, March 1990
- Snodgrass, Herschel B.; Ulrich, Roger K.
- The Astrophysical Journal, Vol. 351
Imposed-dynamo current drive
journal, July 2012
- Jarboe, T. R.; Victor, B. S.; Nelson, B. A.
- Nuclear Fusion, Vol. 52, Issue 8
Investigation of Mass Flows beneath a Sunspot by Time‐Distance Helioseismology
journal, August 2001
- Zhao, Junwei; Kosovichev, Alexander G.; Duvall, Jr., Thomas L.
- The Astrophysical Journal, Vol. 557, Issue 1
On the Probable Existence of a Magnetic Field in Sun-Spots
journal, November 1908
- Hale, George E.
- The Astrophysical Journal, Vol. 28
Derivation of dynamo current drive in a closed-current volume and stable current sustainment in the HIT-SI experiment
journal, February 2017
- Hossack, A. C.; Sutherland, D. A.; Jarboe, T. R.
- Physics of Plasmas, Vol. 24, Issue 2
Predicting Solar Cycle 24 With a Solar Dynamo Model
journal, March 2007
- Choudhuri, Arnab Rai; Chatterjee, Piyali; Jiang, Jie
- Physical Review Letters, Vol. 98, Issue 13
History of Solar Magnetic Fields Since George Ellery Hale
journal, September 2015
- Stenflo, J. O.
- Space Science Reviews, Vol. 210, Issue 1-4
Structure of the solar chromosphere. III - Models of the EUV brightness components of the quiet-sun
journal, January 1981
- Vernazza, J. E.; Avrett, E. H.; Loeser, R.
- The Astrophysical Journal Supplement Series, Vol. 45
The Magnetic Field of Sunspots
journal, November 1933
- Cowling, T. G.
- Monthly Notices of the Royal Astronomical Society, Vol. 94, Issue 1
A Flux‐Tube Tectonics Model for Solar Coronal Heating Driven by the Magnetic Carpet
journal, September 2002
- Priest, Eric R.; Heyvaerts, Jean F.; Title, Alan M.
- The Astrophysical Journal, Vol. 576, Issue 1
A Theorem on Force-Free Magnetic Fields
journal, June 1958
- Woltjer, L.
- Proceedings of the National Academy of Sciences, Vol. 44, Issue 6
Torsional Oscillation, Meridional Flows, and Vorticity Inferred in the Upper Convection Zone of the Sun by Time‐Distance Helioseismology
journal, March 2004
- Zhao, Junwei; Kosovichev, Alexander G.
- The Astrophysical Journal, Vol. 603, Issue 2
The Solar Cycle
journal, September 2015
- Hathaway, David H.
- Living Reviews in Solar Physics, Vol. 12, Issue 1
Coronal mass ejections are not coherent magnetohydrodynamic structures
journal, June 2017
- Owens, M. J.; Lockwood, M.; Barnard, L. A.
- Scientific Reports, Vol. 7, Issue 1
Solar Arcades as Possible Minimum Dissipative Relaxed States
journal, January 2007
- Bhattacharyya, R.; Janaki, M. S.; Dasgupta, B.
- Solar Physics, Vol. 240, Issue 1
A mechanism for the dynamo terms to sustain closed-flux current, including helicity balance, by driving current which crosses the magnetic field
journal, July 2015
- Jarboe, T. R.; Nelson, B. A.; Sutherland, D. A.
- Physics of Plasmas, Vol. 22, Issue 7
The Magnetic Field of Sunspots
journal, March 1934
- Larmor, J.
- Monthly Notices of the Royal Astronomical Society, Vol. 94, Issue 5
Review of spheromak research
journal, June 1994
- Jarboe, T. R.
- Plasma Physics and Controlled Fusion, Vol. 36, Issue 6
The Solar Cycle
journal, March 2010
- Hathaway, David H.
- Living Reviews in Solar Physics, Vol. 7, Issue 1
On the probable existence of a magnetic field in sun-spots
journal, January 1908
- Hale, George E.
- Journal of Geophysical Research, Vol. 13, Issue 4
The solar magnetic field since 1700: II. Physical reconstruction of total, polar and open flux
text, January 2011
- Jiang, Jie; Cameron, Robert H.; Schmitt, Dieter
- arXiv
Additional Evidence Supporting a Model of Shallow, High-Speed Supergranulation
text, January 2014
- Duvall, T. L.; Hanasoge, S. M.; Chakraborty, S.
- arXiv
Evershed clouds as precursors of moving magnetic features around sunspots
text, January 2006
- Solana, D. Cabrera; Rubio, L. R. Bellot; Beck, C.
- arXiv
Solar arcades as possible minimum dissipative relaxed states
preprint, January 2006
- Bhattacharya, R.; Janaki, M. S.; Dasgupta, B.
- arXiv