skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effective radiative forcing in the aerosol–climate model CAM5.3-MARC-ARG

Abstract

We quantify the effective radiative forcing (ERF) of anthropogenic aerosols modelled by the aerosol–climate model CAM5.3-MARC-ARG. CAM5.3-MARC-ARG is a new configuration of the Community Atmosphere Model version 5.3 (CAM5.3) in which the default aerosol module has been replaced by the two-Moment, Multi-Modal, Mixing-state-resolving Aerosol model for Research of Climate (MARC). CAM5.3-MARC-ARG uses the ARG aerosol-activation scheme, consistent with the default configuration of CAM5.3. We compute differences between simulations using year-1850 aerosol emissions and simulations using year-2000 aerosol emissions in order to assess the radiative effects of anthropogenic aerosols. We compare the aerosol lifetimes, aerosol column burdens, cloud properties, and radiative effects produced by CAM5.3-MARC-ARG with those produced by the default configuration of CAM5.3, which uses the modal aerosol module with three log-normal modes (MAM3), and a configuration using the modal aerosol module with seven log-normal modes (MAM7). Compared with MAM3 and MAM7, we find that MARC produces stronger cooling via the direct radiative effect, the shortwave cloud radiative effect, and the surface albedo radiative effect; similarly, MARC produces stronger warming via the longwave cloud radiative effect. Overall, MARC produces a global mean net ERF of - 1.79 ± 0.03 W m-2, which is stronger than the global mean net ERF of - 1.57 ± 0.04 W m-2 produced by MAM3 and - 1.53 ± 0.04 W m-2 produced by MAM7. The regional distribution of ERF also differs between MARC and MAM3, largely due to differences in the regional distribution of the shortwave cloud radiative effect. We conclude that the specific representation of aerosols in global climate models, including aerosol mixing state, has important implications for climate modelling.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [2]; ORCiD logo [1]; ORCiD logo [1];  [3];  [3];  [4]; ORCiD logo [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Emory Univ., Atlanta, GA (United States)
  3. Univ. of Wyoming, Laramie, WY (United States)
  4. Cornell Univ., Ithaca, NY (United States); Lab. des Sciences du Climat et de l’Environnemen, Gif-sur-Yvette (France)
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1610278
Grant/Contract Number:  
FG02-94ER61937
Resource Type:
Accepted Manuscript
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online); Journal Volume: 18; Journal Issue: 21; Journal ID: ISSN 1680-7324
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences

Citation Formats

Grandey, Benjamin S., Rothenberg, Daniel, Avramov, Alexander, Jin, Qinjian, Lee, Hsiang-He, Liu, Xiaohong, Lu, Zheng, Albani, Samuel, and Wang, Chien. Effective radiative forcing in the aerosol–climate model CAM5.3-MARC-ARG. United States: N. p., 2018. Web. https://doi.org/10.5194/acp-18-15783-2018.
Grandey, Benjamin S., Rothenberg, Daniel, Avramov, Alexander, Jin, Qinjian, Lee, Hsiang-He, Liu, Xiaohong, Lu, Zheng, Albani, Samuel, & Wang, Chien. Effective radiative forcing in the aerosol–climate model CAM5.3-MARC-ARG. United States. https://doi.org/10.5194/acp-18-15783-2018
Grandey, Benjamin S., Rothenberg, Daniel, Avramov, Alexander, Jin, Qinjian, Lee, Hsiang-He, Liu, Xiaohong, Lu, Zheng, Albani, Samuel, and Wang, Chien. Fri . "Effective radiative forcing in the aerosol–climate model CAM5.3-MARC-ARG". United States. https://doi.org/10.5194/acp-18-15783-2018. https://www.osti.gov/servlets/purl/1610278.
@article{osti_1610278,
title = {Effective radiative forcing in the aerosol–climate model CAM5.3-MARC-ARG},
author = {Grandey, Benjamin S. and Rothenberg, Daniel and Avramov, Alexander and Jin, Qinjian and Lee, Hsiang-He and Liu, Xiaohong and Lu, Zheng and Albani, Samuel and Wang, Chien},
abstractNote = {We quantify the effective radiative forcing (ERF) of anthropogenic aerosols modelled by the aerosol–climate model CAM5.3-MARC-ARG. CAM5.3-MARC-ARG is a new configuration of the Community Atmosphere Model version 5.3 (CAM5.3) in which the default aerosol module has been replaced by the two-Moment, Multi-Modal, Mixing-state-resolving Aerosol model for Research of Climate (MARC). CAM5.3-MARC-ARG uses the ARG aerosol-activation scheme, consistent with the default configuration of CAM5.3. We compute differences between simulations using year-1850 aerosol emissions and simulations using year-2000 aerosol emissions in order to assess the radiative effects of anthropogenic aerosols. We compare the aerosol lifetimes, aerosol column burdens, cloud properties, and radiative effects produced by CAM5.3-MARC-ARG with those produced by the default configuration of CAM5.3, which uses the modal aerosol module with three log-normal modes (MAM3), and a configuration using the modal aerosol module with seven log-normal modes (MAM7). Compared with MAM3 and MAM7, we find that MARC produces stronger cooling via the direct radiative effect, the shortwave cloud radiative effect, and the surface albedo radiative effect; similarly, MARC produces stronger warming via the longwave cloud radiative effect. Overall, MARC produces a global mean net ERF of -1.79±0.03 W m-2, which is stronger than the global mean net ERF of -1.57±0.04 W m-2 produced by MAM3 and -1.53±0.04 W m-2 produced by MAM7. The regional distribution of ERF also differs between MARC and MAM3, largely due to differences in the regional distribution of the shortwave cloud radiative effect. We conclude that the specific representation of aerosols in global climate models, including aerosol mixing state, has important implications for climate modelling.},
doi = {10.5194/acp-18-15783-2018},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 21,
volume = 18,
place = {United States},
year = {2018},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Large contribution of natural aerosols to uncertainty in indirect forcing
journal, November 2013

  • Carslaw, K. S.; Lee, L. A.; Reddington, C. L.
  • Nature, Vol. 503, Issue 7474
  • DOI: 10.1038/nature12674

Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5
journal, January 2012

  • Liu, X.; Easter, R. C.; Ghan, S. J.
  • Geoscientific Model Development, Vol. 5, Issue 3
  • DOI: 10.5194/gmd-5-709-2012

On the spatio-temporal representativeness of observations
journal, January 2017

  • Schutgens, Nick; Tsyro, Svetlana; Gryspeerdt, Edward
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 16
  • DOI: 10.5194/acp-17-9761-2017

Radiative forcing in the ACCMIP historical and future climate simulations
journal, January 2013

  • Shindell, D. T.; Lamarque, J. -F.; Schulz, M.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 6
  • DOI: 10.5194/acp-13-2939-2013

Observational and modelling evidence of tropical deep convective clouds as a source of mid-tropospheric accumulation mode aerosols
journal, January 2008

  • Engström, Anders; Ekman, Annica M. L.; Krejci, Radovan
  • Geophysical Research Letters, Vol. 35, Issue 23
  • DOI: 10.1029/2008GL035817

An AeroCom assessment of black carbon in Arctic snow and sea ice
journal, January 2014

  • Jiao, C.; Flanner, M. G.; Balkanski, Y.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 5
  • DOI: 10.5194/acp-14-2399-2014

The importance of temporal collocation for the evaluation of aerosol models with observations
journal, January 2016

  • Schutgens, N. A. J.; Partridge, D. G.; Stier, P.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 2
  • DOI: 10.5194/acp-16-1065-2016

Extratropical Cooling, Interhemispheric Thermal Gradients, and Tropical Climate Change
journal, May 2012


Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires
journal, January 2016

  • Grandey, Benjamin S.; Lee, Hsiang-He; Wang, Chien
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 22
  • DOI: 10.5194/acp-16-14495-2016

Adjustments in the Forcing-Feedback Framework for Understanding Climate Change
journal, February 2015

  • Sherwood, Steven C.; Bony, Sandrine; Boucher, Olivier
  • Bulletin of the American Meteorological Society, Vol. 96, Issue 2
  • DOI: 10.1175/BAMS-D-13-00167.1

Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model
journal, January 2010

  • Gettelman, A.; Liu, X.; Ghan, S. J.
  • Journal of Geophysical Research, Vol. 115, Issue D18
  • DOI: 10.1029/2009JD013797

How Uncertainty in Field Measurements of Ice Nucleating Particles Influences Modeled Cloud Forcing
journal, January 2018

  • Garimella, S.; Rothenberg, D. A.; Wolf, M. J.
  • Journal of the Atmospheric Sciences, Vol. 75, Issue 1
  • DOI: 10.1175/JAS-D-17-0089.1

Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing
journal, January 2015

  • Scanza, R. A.; Mahowald, N.; Ghan, S.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 1
  • DOI: 10.5194/acp-15-537-2015

Constraining cloud droplet number concentration in GCMs suppresses the aerosol indirect effect
journal, January 2009

  • Hoose, C.; Kristjánsson, J. E.; Iversen, T.
  • Geophysical Research Letters, Vol. 36, Issue 12
  • DOI: 10.1029/2009GL038568

Inhomogeneous forcing and transient climate sensitivity
journal, March 2014


Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application
journal, January 2010

  • Lamarque, J. -F.; Bond, T. C.; Eyring, V.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 15
  • DOI: 10.5194/acp-10-7017-2010

Global indirect aerosol effects: a review
journal, January 2005


Improved dust representation in the Community Atmosphere Model
journal, July 2014

  • Albani, S.; Mahowald, N. M.; Perry, A. T.
  • Journal of Advances in Modeling Earth Systems, Vol. 6, Issue 3
  • DOI: 10.1002/2013MS000279

The effect of aerosol composition and concentration on the development and anvil properties of a continental deep convective cloud
journal, January 2007

  • Ekman, A. M. L.; Engström, A.; Wang, C.
  • Quarterly Journal of the Royal Meteorological Society
  • DOI: 10.1002/qj.108

Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model
journal, January 2016


Rapid Adjustments Cause Weak Surface Temperature Response to Increased Black Carbon Concentrations: Rapid Adjustments Cause Weak BC Response
journal, November 2017

  • Stjern, Camilla Weum; Samset, Bjørn Hallvard; Myhre, Gunnar
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 21
  • DOI: 10.1002/2017JD027326

Global Indirect Radiative Forcing Caused by Aerosols
book, January 2009

  • Haywood, Jim; Donner, Leo; Jones, Andy
  • Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation
  • DOI: 10.7551/mitpress/9780262012874.003.0019

Global observations of aerosol-cloud-precipitation-climate interactions: Aerosol-cloud-climate interactions
journal, November 2014

  • Rosenfeld, Daniel; Andreae, Meinrat O.; Asmi, Ari
  • Reviews of Geophysics, Vol. 52, Issue 4
  • DOI: 10.1002/2013RG000441

A single parameter representation of hygroscopic growth and cloud condensation nucleus activity
journal, January 2007

  • Petters, M. D.; Kreidenweis, S. M.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 8
  • DOI: 10.5194/acp-7-1961-2007

Transient Climate Impacts for Scenarios of Aerosol Emissions from Asia: A Story of Coal versus Gas
journal, April 2016


Sub-micrometer aerosol particles in the upper troposphere/lowermost stratosphere as measured by CARIBIC and modeled using the MIT-CAM3 global climate model: SUB-MICROMETER PARTICLES IN THE UT/LMS
journal, June 2012

  • Ekman, Annica M. L.; Hermann, Markus; Groß, Peter
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D11
  • DOI: 10.1029/2011JD016777

Distribution and direct radiative forcing of carbonaceous and sulfate aerosols in an interactive size-resolving aerosol–climate model
journal, January 2008

  • Kim, Dongchul; Wang, Chien; Ekman, Annica M. L.
  • Journal of Geophysical Research, Vol. 113, Issue D16
  • DOI: 10.1029/2007JD009756

Aerosol indirect effects – general circulation model intercomparison and evaluation with satellite data
journal, January 2009


Anthropogenic aerosols and the distribution of past large‐scale precipitation change
journal, December 2015


Sensitivity of the Aerosol Indirect Effect to Subgrid Variability in the Cloud Parameterization of the GFDL Atmosphere General Circulation Model AM3
journal, July 2011

  • Golaz, Jean-Christophe; Salzmann, Marc; Donner, Leo J.
  • Journal of Climate, Vol. 24, Issue 13
  • DOI: 10.1175/2010JCLI3945.1

Explicit simulations of aerosol physics in a cloud-resolving model: a sensitivity study based on an observed convective cloud
journal, January 2004

  • Ekman, A. M. L.; Wang, C.; Wilson, J.
  • Atmospheric Chemistry and Physics, Vol. 4, Issue 3
  • DOI: 10.5194/acp-4-773-2004

Inclusion of Ice Microphysics in the NCAR Community Atmospheric Model Version 3 (CAM3)
journal, September 2007

  • Liu, Xiaohong; Penner, Joyce E.; Ghan, Steven J.
  • Journal of Climate, Vol. 20, Issue 18
  • DOI: 10.1175/JCLI4264.1

Aerosol absorption and radiative forcing
journal, January 2007

  • Stier, P.; Seinfeld, J. H.; Kinne, S.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 19
  • DOI: 10.5194/acp-7-5237-2007

Strong present-day aerosol cooling implies a hot future
journal, June 2005

  • Andreae, Meinrat O.; Jones, Chris D.; Cox, Peter M.
  • Nature, Vol. 435, Issue 7046
  • DOI: 10.1038/nature03671

Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review
journal, November 2000

  • Haywood, James; Boucher, Olivier
  • Reviews of Geophysics, Vol. 38, Issue 4
  • DOI: 10.1029/1999RG000078

A parameterization of aerosol activation: 2. Multiple aerosol types
journal, March 2000

  • Abdul-Razzak, Hayder; Ghan, Steven J.
  • Journal of Geophysical Research: Atmospheres, Vol. 105, Issue D5
  • DOI: 10.1029/1999JD901161

Technical Note: Estimating aerosol effects on cloud radiative forcing
journal, January 2013


Metamodeling of Droplet Activation for Global Climate Models
journal, March 2016

  • Rothenberg, Daniel; Wang, Chien
  • Journal of the Atmospheric Sciences, Vol. 73, Issue 3
  • DOI: 10.1175/JAS-D-15-0223.1

On the representation of aerosol activation and its influence on model-derived estimates of the aerosol indirect effect
journal, January 2018

  • Rothenberg, Daniel; Avramov, Alexander; Wang, Chien
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 11
  • DOI: 10.5194/acp-18-7961-2018

Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5
journal, January 2016

  • Jiang, Yiquan; Lu, Zheng; Liu, Xiaohong
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 23
  • DOI: 10.5194/acp-16-14805-2016

Explicit Simulation of Aerosol Physics in a Cloud-Resolving Model: Aerosol Transport and Processing in the Free Troposphere
journal, February 2006

  • Ekman, Annica M. L.; Wang, Chien; Ström, Johan
  • Journal of the Atmospheric Sciences, Vol. 63, Issue 2
  • DOI: 10.1175/JAS3645.1

COSP: Satellite simulation software for model assessment
journal, August 2011

  • Bodas-Salcedo, A.; Webb, M. J.; Bony, S.
  • Bulletin of the American Meteorological Society, Vol. 92, Issue 8
  • DOI: 10.1175/2011BAMS2856.1

Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing
journal, January 1995


Review of Aerosol–Cloud Interactions: Mechanisms, Significance, and Challenges
journal, November 2016

  • Fan, Jiwen; Wang, Yuan; Rosenfeld, Daniel
  • Journal of the Atmospheric Sciences, Vol. 73, Issue 11
  • DOI: 10.1175/JAS-D-16-0037.1

Sea-salt aerosol response to climate change: Last Glacial Maximum, preindustrial, and doubled carbon dioxide climates
journal, January 2006

  • Mahowald, Natalie M.; Lamarque, Jean-François; Tie, Xue Xi
  • Journal of Geophysical Research, Vol. 111, Issue D5
  • DOI: 10.1029/2005JD006459

The responses of cloudiness to the direct radiative effect of sulfate and carbonaceous aerosols: Cloud responses to aerosols
journal, February 2014

  • Kim, Dongchul; Wang, Chien; Ekman, Annica M. L.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 3
  • DOI: 10.1002/2013JD020529

Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application
journal, January 2010

  • Lamarque, J. -F.; Bond, T. C.; Eyring, V.
  • Atmospheric Chemistry and Physics Discussions, Vol. 10, Issue 2
  • DOI: 10.5194/acpd-10-4963-2010

Global indirect aerosol effects: a review
journal, January 2004

  • Lohmann, U.; Feichter, J.
  • Atmospheric Chemistry and Physics Discussions, Vol. 4, Issue 6
  • DOI: 10.5194/acpd-4-7561-2004

    Works referencing / citing this record:

    Background Conditions Influence the Estimated Cloud Radiative Effects of Anthropogenic Aerosol Emissions From Different Source Regions
    journal, February 2019

    • Grandey, Benjamin S.; Wang, Chien
    • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 4
    • DOI: 10.1029/2018jd029644

    Impacts on cloud radiative effects induced by coexisting aerosols converted from international shipping and maritime DMS emissions
    journal, January 2018

    • Jin, Qinjian; Grandey, Benjamin S.; Rothenberg, Daniel
    • Atmospheric Chemistry and Physics, Vol. 18, Issue 22
    • DOI: 10.5194/acp-18-16793-2018