skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The MG-RAST API explorer: an on-ramp for RESTful query composition

Abstract

Background The MG-RAST API provides search capabilities and delivers organism and function data as well as raw or annotated sequence data via the web interface and its RESTful API. For casual users, however, RESTful APIs are hard to learn and work with. Results We created the graphical MG-RAST API explorer to help researchers more easily build and export API queries; understand the data abstractions and indices available in MG-RAST; and use the results presented in-browser for exploration, development, and debugging. Conclusions The API explorer lowers the barrier to entry for occasional or first-time MG-RAST API users.

Authors:
 [1];  [1];  [1];  [1];  [1]; ORCiD logo [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Chicago, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Institutes of Health (NIH); National Science Foundation (NSF); USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1609142
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
BMC Bioinformatics
Additional Journal Information:
Journal Volume: 20; Journal Issue: 1; Journal ID: ISSN 1471-2105
Publisher:
BioMed Central
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Paczian, Tobias, Trimble, William L., Gerlach, Wolfgang, Harrison, Travis, Wilke, Andreas, and Meyer, Folker. The MG-RAST API explorer: an on-ramp for RESTful query composition. United States: N. p., 2019. Web. https://doi.org/10.1186/s12859-019-2993-0.
Paczian, Tobias, Trimble, William L., Gerlach, Wolfgang, Harrison, Travis, Wilke, Andreas, & Meyer, Folker. The MG-RAST API explorer: an on-ramp for RESTful query composition. United States. https://doi.org/10.1186/s12859-019-2993-0
Paczian, Tobias, Trimble, William L., Gerlach, Wolfgang, Harrison, Travis, Wilke, Andreas, and Meyer, Folker. Fri . "The MG-RAST API explorer: an on-ramp for RESTful query composition". United States. https://doi.org/10.1186/s12859-019-2993-0. https://www.osti.gov/servlets/purl/1609142.
@article{osti_1609142,
title = {The MG-RAST API explorer: an on-ramp for RESTful query composition},
author = {Paczian, Tobias and Trimble, William L. and Gerlach, Wolfgang and Harrison, Travis and Wilke, Andreas and Meyer, Folker},
abstractNote = {Background The MG-RAST API provides search capabilities and delivers organism and function data as well as raw or annotated sequence data via the web interface and its RESTful API. For casual users, however, RESTful APIs are hard to learn and work with. Results We created the graphical MG-RAST API explorer to help researchers more easily build and export API queries; understand the data abstractions and indices available in MG-RAST; and use the results presented in-browser for exploration, development, and debugging. Conclusions The API explorer lowers the barrier to entry for occasional or first-time MG-RAST API users.},
doi = {10.1186/s12859-019-2993-0},
journal = {BMC Bioinformatics},
number = 1,
volume = 20,
place = {United States},
year = {2019},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

EBI metagenomics in 2016 - an expanding and evolving resource for the analysis and archiving of metagenomic data
journal, November 2015

  • Mitchell, Alex; Bucchini, Francois; Cochrane, Guy
  • Nucleic Acids Research, Vol. 44, Issue D1
  • DOI: 10.1093/nar/gkv1195

CloVR: A virtual machine for automated and portable sequence analysis from the desktop using cloud computing
journal, August 2011

  • Angiuoli, Samuel V.; Matalka, Malcolm; Gussman, Aaron
  • BMC Bioinformatics, Vol. 12, Issue 1
  • DOI: 10.1186/1471-2105-12-356

MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets
journal, October 2017

  • Steinegger, Martin; Söding, Johannes
  • Nature Biotechnology, Vol. 35, Issue 11
  • DOI: 10.1038/nbt.3988

The M5nr: a novel non-redundant database containing protein sequences and annotations from multiple sources and associated tools
journal, January 2012


Fast and sensitive protein alignment using DIAMOND
journal, November 2014

  • Buchfink, Benjamin; Xie, Chao; Huson, Daniel H.
  • Nature Methods, Vol. 12, Issue 1
  • DOI: 10.1038/nmeth.3176

MG-RAST version 4—lessons learned from a decade of low-budget ultra-high-throughput metagenome analysis
journal, September 2017

  • Meyer, Folker; Bagchi, Saurabh; Chaterji, Somali
  • Briefings in Bioinformatics, Vol. 20, Issue 4
  • DOI: 10.1093/bib/bbx105

IMG/M: integrated genome and metagenome comparative data analysis system
journal, October 2016

  • Chen, I-Min A.; Markowitz, Victor M.; Chu, Ken
  • Nucleic Acids Research, Vol. 45, Issue D1
  • DOI: 10.1093/nar/gkw929

The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome
journal, July 2012

  • McDonald, Daniel; Clemente, Jose C.; Kuczynski, Justin
  • GigaScience, Vol. 1, Issue 1
  • DOI: 10.1186/2047-217X-1-7

Metagenomics - a guide from sampling to data analysis
journal, February 2012

  • Thomas, Torsten; Gilbert, Jack; Meyer, Folker
  • Microbial Informatics and Experimentation, Vol. 2, Issue 1
  • DOI: 10.1186/2042-5783-2-3