skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-field spatial imaging of charge transport in silicon at low temperature

Abstract

We present direct imaging measurements of charge transport across a 1 cm x 1 cm x 4 mm-thick crystal of high purity silicon ($$\sim$$15 k$$\Omega$$-cm) at temperatures of 5 K and 500 mK. We use these data to measure the lateral diffusion of electrons and holes as a function of the electric field applied along the [111] crystal axis, and to verify our low-temperature Monte Carlo software. The range of field strengths in this paper exceed those used in the previous study (DOI: 10.1063/1.5049691) by a factor of 10, and now encompasses the region in which some recent silicon dark matter detectors operate (DOI: 10.1103/PhysRevLett.121.051301). We also report on a phenomenon of surface charge trapping which can reduce expected charge collection.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [2];  [3]; ORCiD logo [4];  [3];  [1];  [3]; ORCiD logo [1];  [5]; ORCiD logo [1];  [6]
  1. Stanford Univ., CA (United States)
  2. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Univ. of Chicago, IL (United States)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  4. Stanford Univ., CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  5. San Diego State Univ., San Diego, CA (United States)
  6. Santa Clara Univ., CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE Office of Science (SC), High Energy Physics (HEP)
OSTI Identifier:
1608949
Alternate Identifier(s):
OSTI ID: 1598914; OSTI ID: 1615366
Report Number(s):
arXiv:1910.02169; FERMILAB-PUB-19-695-AE
Journal ID: ISSN 2158-3226
Grant/Contract Number:  
1161130-110-SDDTA; AC02-76SF00515; AC02-07CH11359
Resource Type:
Accepted Manuscript
Journal Name:
AIP Advances
Additional Journal Information:
Journal Volume: 10; Journal Issue: 2; Journal ID: ISSN 2158-3226
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS

Citation Formats

Stanford, C., Moffatt, R. A., Kurinsky, N. A., Brink, P. L., Cabrera, B., Cherry, M., Insulla, F., Kelsey, M., Ponce, F., Sundqvist, K., Yellin, S., and Young, B. A. High-field spatial imaging of charge transport in silicon at low temperature. United States: N. p., 2020. Web. https://doi.org/10.1063/1.5131171.
Stanford, C., Moffatt, R. A., Kurinsky, N. A., Brink, P. L., Cabrera, B., Cherry, M., Insulla, F., Kelsey, M., Ponce, F., Sundqvist, K., Yellin, S., & Young, B. A. High-field spatial imaging of charge transport in silicon at low temperature. United States. https://doi.org/10.1063/1.5131171
Stanford, C., Moffatt, R. A., Kurinsky, N. A., Brink, P. L., Cabrera, B., Cherry, M., Insulla, F., Kelsey, M., Ponce, F., Sundqvist, K., Yellin, S., and Young, B. A. Tue . "High-field spatial imaging of charge transport in silicon at low temperature". United States. https://doi.org/10.1063/1.5131171. https://www.osti.gov/servlets/purl/1608949.
@article{osti_1608949,
title = {High-field spatial imaging of charge transport in silicon at low temperature},
author = {Stanford, C. and Moffatt, R. A. and Kurinsky, N. A. and Brink, P. L. and Cabrera, B. and Cherry, M. and Insulla, F. and Kelsey, M. and Ponce, F. and Sundqvist, K. and Yellin, S. and Young, B. A.},
abstractNote = {We present direct imaging measurements of charge transport across a 1 cm x 1 cm x 4 mm-thick crystal of high purity silicon ($\sim$15 k$\Omega$-cm) at temperatures of 5 K and 500 mK. We use these data to measure the lateral diffusion of electrons and holes as a function of the electric field applied along the [111] crystal axis, and to verify our low-temperature Monte Carlo software. The range of field strengths in this paper exceed those used in the previous study (DOI: 10.1063/1.5049691) by a factor of 10, and now encompasses the region in which some recent silicon dark matter detectors operate (DOI: 10.1103/PhysRevLett.121.051301). We also report on a phenomenon of surface charge trapping which can reduce expected charge collection.},
doi = {10.1063/1.5131171},
journal = {AIP Advances},
number = 2,
volume = 10,
place = {United States},
year = {2020},
month = {2}
}

Works referenced in this record:

Calorimetric ionization detector
journal, April 1990

  • Luke, P. N.; Beeman, J.; Goulding, F. S.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 289, Issue 3
  • DOI: 10.1016/0168-9002(90)91510-i

Cyclotron Resonance of Electrons and Holes in Silicon and Germanium Crystals
journal, April 1955


Energy band structure in p-type germanium and silicon
journal, September 1956


First Dark Matter Constraints from a SuperCDMS Single-Charge Sensitive Detector
journal, August 2018