DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: RNA extension drives a stepwise displacement of an initiation-factor structural module in initial transcription

Abstract

All organisms—bacteria, archaea, and eukaryotes—have a transcription initiation factor that contains a structural module that binds within the RNA polymerase (RNAP) active-center cleft and interacts with template-strand single-stranded DNA (ssDNA) in the immediate vicinity of the RNAP active center. This transcription initiation-factor structural module preorganizes template-strand ssDNA to engage the RNAP active center, thereby facilitating binding of initiating nucleotides and enabling transcription initiation from initiating mononucleotides. However, this transcription initiation-factor structural module occupies the path of nascent RNA and thus presumably must be displaced before or during initial transcription. In this paper, we report four sets of crystal structures of bacterial initially transcribing complexes that demonstrate and define details of stepwise, RNA-extension-driven displacement of the “σ-finger” of the bacterial transcription initiation factor σ. The structures reveal that—for both the primary σ-factor and extracytoplasmic (ECF) σ-factors, and for both 5'-triphosphate RNA and 5'-hydroxy RNA—the “σ-finger” is displaced in stepwise fashion, progressively folding back upon itself, driven by collision with the RNA 5'-end, upon extension of nascent RNA from ~5 nt to ~10 nt.

Authors:
 [1];  [2];  [2]; ORCiD logo [2]; ORCiD logo [3]
  1. Chinese Academy of Sciences (CAS), Shanghai (China); Univ. of Chinese Academy of Sciences, Beijing (China)
  2. Rutgers Univ., Piscataway, NJ (United States)
  3. Chinese Academy of Sciences (CAS), Shanghai (China); Rutgers Univ., Piscataway, NJ (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
Chinese Academy of Sciences (CAS); National Natural Science Foundation of China (NSFC); National Institutes of Health (NIH)
OSTI Identifier:
1608866
Grant/Contract Number:  
31670067; 31822001; QYZDB-SSWSMC005; GM041376
Resource Type:
Accepted Manuscript
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 117; Journal Issue: 11; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences
Country of Publication:
United States
Language:
ENGLISH
Subject:
59 BASIC BIOLOGICAL SCIENCES; transcription initiation; initial transcription; promoter escape; sigma factor; initiation factor

Citation Formats

Li, Lingting, Molodtsov, Vadim, Lin, Wei, Ebright, Richard H., and Zhang, Yu. RNA extension drives a stepwise displacement of an initiation-factor structural module in initial transcription. United States: N. p., 2020. Web. doi:10.1073/pnas.1920747117.
Li, Lingting, Molodtsov, Vadim, Lin, Wei, Ebright, Richard H., & Zhang, Yu. RNA extension drives a stepwise displacement of an initiation-factor structural module in initial transcription. United States. https://doi.org/10.1073/pnas.1920747117
Li, Lingting, Molodtsov, Vadim, Lin, Wei, Ebright, Richard H., and Zhang, Yu. Tue . "RNA extension drives a stepwise displacement of an initiation-factor structural module in initial transcription". United States. https://doi.org/10.1073/pnas.1920747117. https://www.osti.gov/servlets/purl/1608866.
@article{osti_1608866,
title = {RNA extension drives a stepwise displacement of an initiation-factor structural module in initial transcription},
author = {Li, Lingting and Molodtsov, Vadim and Lin, Wei and Ebright, Richard H. and Zhang, Yu},
abstractNote = {All organisms—bacteria, archaea, and eukaryotes—have a transcription initiation factor that contains a structural module that binds within the RNA polymerase (RNAP) active-center cleft and interacts with template-strand single-stranded DNA (ssDNA) in the immediate vicinity of the RNAP active center. This transcription initiation-factor structural module preorganizes template-strand ssDNA to engage the RNAP active center, thereby facilitating binding of initiating nucleotides and enabling transcription initiation from initiating mononucleotides. However, this transcription initiation-factor structural module occupies the path of nascent RNA and thus presumably must be displaced before or during initial transcription. In this paper, we report four sets of crystal structures of bacterial initially transcribing complexes that demonstrate and define details of stepwise, RNA-extension-driven displacement of the “σ-finger” of the bacterial transcription initiation factor σ. The structures reveal that—for both the primary σ-factor and extracytoplasmic (ECF) σ-factors, and for both 5'-triphosphate RNA and 5'-hydroxy RNA—the “σ-finger” is displaced in stepwise fashion, progressively folding back upon itself, driven by collision with the RNA 5'-end, upon extension of nascent RNA from ~5 nt to ~10 nt.},
doi = {10.1073/pnas.1920747117},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 11,
volume = 117,
place = {United States},
year = {Tue Mar 03 00:00:00 EST 2020},
month = {Tue Mar 03 00:00:00 EST 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

NanoRNAs Prime Transcription Initiation In Vivo
journal, June 2011


Displacement of the transcription factor B reader domain during transcription initiation
journal, August 2018

  • Dexl, Stefan; Reichelt, Robert; Kraatz, Katharina
  • Nucleic Acids Research, Vol. 46, Issue 19
  • DOI: 10.1093/nar/gky699

Near-atomic resolution visualization of human transcription promoter opening
journal, May 2016


Abortive Initiation and Productive Initiation by RNA Polymerase Involve DNA Scrunching
journal, November 2006


Initial Transcription by RNA Polymerase Proceeds Through a DNA-Scrunching Mechanism
journal, November 2006


Molecular mechanism of promoter opening by RNA polymerase III
journal, January 2018

  • Vorländer, Matthias K.; Khatter, Heena; Wetzel, Rene
  • Nature, Vol. 553, Issue 7688
  • DOI: 10.1038/nature25440

Themes and variations in gene regulation by extracytoplasmic function (ECF) sigma factors
journal, April 2017


RNA polymerase II–TFIIB structure and mechanism of transcription initiation
journal, October 2009

  • Kostrewa, Dirk; Zeller, Mirijam E.; Armache, Karim-Jean
  • Nature, Vol. 462, Issue 7271
  • DOI: 10.1038/nature08548

Changes in Conserved Region 3 of Escherichia coli ς 70 Reduce Abortive Transcription and Enhance Promoter Escape
journal, December 2002

  • Cashel, Michael; Hsu, Lilian M.; Hernandez, V. James
  • Journal of Biological Chemistry, Vol. 278, Issue 8
  • DOI: 10.1074/jbc.M211430200

Structural basis of RNA polymerase III transcription initiation
journal, January 2018

  • Abascal-Palacios, Guillermo; Ramsay, Ewan Phillip; Beuron, Fabienne
  • Nature, Vol. 553, Issue 7688
  • DOI: 10.1038/nature25441

TFIIB Is Only ∼9 Å Away from the 5'-End of a Trimeric RNA Primer in a Functional RNA Polymerase II Preinitiation Complex
journal, March 2015


Structure and function of the initially transcribing RNA polymerase II–TFIIB complex
journal, November 2012

  • Sainsbury, Sarah; Niesser, Jürgen; Cramer, Patrick
  • Nature, Vol. 493, Issue 7432
  • DOI: 10.1038/nature11715

Structural basis of transcription activation
journal, June 2016


A Single-Molecule View of Archaeal Transcription
journal, September 2019

  • Kramm, Kevin; Endesfelder, Ulrike; Grohmann, Dina
  • Journal of Molecular Biology, Vol. 431, Issue 20
  • DOI: 10.1016/j.jmb.2019.06.009

Structural Basis of RNA Polymerase I Transcription Initiation
journal, March 2017


Structural Basis of Transcription Initiation by Bacterial RNA Polymerase Holoenzyme
journal, June 2014

  • Basu, Ritwika S.; Warner, Brittany A.; Molodtsov, Vadim
  • Journal of Biological Chemistry, Vol. 289, Issue 35
  • DOI: 10.1074/jbc.M114.584037

Structures of RNA Polymerase Closed and Intermediate Complexes Reveal Mechanisms of DNA Opening and Transcription Initiation
journal, July 2017


Structural insights into transcription initiation by yeast RNA polymerase I
journal, July 2017


Structural Basis for NusA Stabilized Transcriptional Pausing
journal, March 2018


RNA Polymerase Pausing during Initial Transcription
journal, September 2016


Crystal Structures of the E. coli Transcription Initiation Complexes with a Complete Bubble
journal, May 2015


Structural basis for −10 promoter element melting by environmentally induced sigma factors
journal, February 2014

  • Campagne, Sébastien; Marsh, May E.; Capitani, Guido
  • Nature Structural & Molecular Biology, Vol. 21, Issue 3
  • DOI: 10.1038/nsmb.2777

Structures of the RNA polymerase- 54 reveal new and conserved regulatory strategies
journal, August 2015


Structural mechanism of ATP-independent transcription initiation by RNA polymerase I
journal, June 2017


Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution
journal, May 2002

  • Vassylyev, Dmitry G.; Sekine, Shun-ichi; Laptenko, Oleg
  • Nature, Vol. 417, Issue 6890
  • DOI: 10.1038/nature752

Structural Basis of Transcription Initiation
journal, October 2012


Extra Cytoplasmic Function sigma factors, recent structural insights into promoter recognition and regulation
journal, February 2015

  • Campagne, Sébastien; Allain, Frédéric H-T; Vorholt, Julia A.
  • Current Opinion in Structural Biology, Vol. 30
  • DOI: 10.1016/j.sbi.2015.01.006

The Structural Basis for Promoter −35 Element Recognition by the Group IV σ Factors
journal, August 2006


Structure of an RNA Polymerase II–TFIIB Complex and the Transcription Initiation Mechanism
journal, November 2009


Bacterial Sigma Factors: A Historical, Structural, and Genomic Perspective
journal, September 2014


Transcription initiation complex structures elucidate DNA opening
journal, May 2016

  • Plaschka, C.; Hantsche, M.; Dienemann, C.
  • Nature, Vol. 533, Issue 7603
  • DOI: 10.1038/nature17990

Structural Basis of Transcription Initiation: RNA Polymerase Holoenzyme at 4 Å Resolution
journal, May 2002

  • Murakami, Katsuhiko S.; Masuda, Shoko; Darst, Seth A.
  • Science, Vol. 296, Issue 5571, p. 1280-1284
  • DOI: 10.1126/science.1069594

Growth phase-dependent control of transcription start site selection and gene expression by nanoRNAs
journal, July 2012

  • Vvedenskaya, I. O.; Sharp, J. S.; Goldman, S. R.
  • Genes & Development, Vol. 26, Issue 13
  • DOI: 10.1101/gad.192732.112

RNA Polymerase Accommodates a Pause RNA Hairpin by Global Conformational Rearrangements that Prolong Pausing
journal, March 2018


Structures of E . coli σ S -transcription initiation complexes provide new insights into polymerase mechanism
journal, March 2016

  • Liu, Bin; Zuo, Yuhong; Steitz, Thomas A.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 15
  • DOI: 10.1073/pnas.1520555113

Structure of a bacterial RNA polymerase holoenzyme open promoter complex
journal, September 2015

  • Bae, Brian; Feklistov, Andrey; Lass-Napiorkowska, Agnieszka
  • eLife, Vol. 4
  • DOI: 10.7554/eLife.08504

Conserved Region 3 of Escherichia coli σ 70 Is Implicated in the Process of Abortive Transcription
journal, August 1996

  • Hernandez, V. James; Hsu, Lilian M.; Cashel, Michael
  • Journal of Biological Chemistry, Vol. 271, Issue 31
  • DOI: 10.1074/jbc.271.31.18775

X-ray Crystal Structure of Escherichia coli RNA Polymerase σ 70 Holoenzyme
journal, February 2013


Backtracked and paused transcription initiation intermediate of Escherichia coli RNA polymerase
journal, October 2016

  • Lerner, Eitan; Chung, SangYoon; Allen, Benjamin L.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 43
  • DOI: 10.1073/pnas.1605038113

Structures and mechanism of transcription initiation by bacterial ECF factors
journal, May 2019

  • Fang, Chengli; Li, Lingting; Shen, Liqiang
  • Nucleic Acids Research, Vol. 47, Issue 13
  • DOI: 10.1093/nar/gkz470

Structural basis of ECF-σ-factor-dependent transcription initiation
journal, February 2019


Structural basis for transcription initiation by bacterial ECF σ factors
journal, March 2019


Pausing controls branching between productive and non-productive pathways during initial transcription in bacteria
journal, April 2018


Structural Insights into the Eukaryotic Transcription Initiation Machinery
journal, May 2017


Distinct functions of the RNA polymerase σ subunit region 3.2 in RNA priming and promoter escape
journal, January 2014

  • Pupov, Danil; Kuzin, Ivan; Bass, Irina
  • Nucleic Acids Research, Vol. 42, Issue 7
  • DOI: 10.1093/nar/gkt1384

Transcription Factor B Contacts Promoter DNA Near the Transcription Start Site of the Archaeal Transcription Initiation Complex
journal, November 2003

  • Renfrow, Matthew B.; Naryshkin, Nikolai; Lewis, L. Michelle
  • Journal of Biological Chemistry, Vol. 279, Issue 4
  • DOI: 10.1074/jbc.M311433200

Near-atomic resolution visualization of human transcription promoter opening
journal, May 2017

  • He, Yuan; Yan, Chunli; Fang, Jie
  • Acta Crystallographica Section A Foundations and Advances, Vol. 73, Issue a1
  • DOI: 10.1107/s0108767317097483

Bacterial Sigma Factors: A Historical, Structural, and Genomic Perspective
journal, September 2014