skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling radiative-shocks created by laser–cluster interactions

Abstract

Radiative-shocks induced by laser–cluster interactions are modeled using radiation-hydrodynamic simulations. A good agreement—in both shock velocity and density profiles—is obtained between experiment and simulations, indicating that non-local thermodynamic equilibrium (NLTE) radiative effects are important in the experimental regime examined, particularly at early times (≤30 ns) due to the elevated temperatures (≥35 eV). The enhanced NLTE radiative emission causes the shock to be reduced in amplitude, increased in width, and reduced in propagation velocity, while the amplitude of the radiative precursor is increased. As the density and temperature conditions are relatively modest, this potentially has important implications for the scalings that are used in laboratory–astrophysics to transform between laboratory and astrophysical scales, which do not hold for non-LTE systems.

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1];  [2];  [3]; ORCiD logo [3];  [3];  [4];  [5];  [6];  [7];  [3]
  1. STFC Rutherford Appleton Lab.,Didcot (United Kingdom)
  2. First Light Fusion, Yarnton, (United Kingdom)
  3. Imperial College, London (United Kingdom)
  4. IMS Bordeaux University, Talence (France)
  5. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  6. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  7. AWE Aldermaston, Reading (United Kingdom)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE; Engineering and Physical Sciences Research Council (EPSRC)
OSTI Identifier:
1608570
Grant/Contract Number:  
AC02-76SF00515; EP/G001324/1
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 27; Journal Issue: 3; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Scott, R. H. H., Booth, N., Hawkes, S. J., Symes, D. R., Hooker, C., Doyle, H. W., Olsson-Robbie, S. I., Lowe, H. F., Price, C. J., Bigourd, D., Patankar, S., Mecseki, K., Gumbrell, E. T., and Smith, R. A. Modeling radiative-shocks created by laser–cluster interactions. United States: N. p., 2020. Web. doi:10.1063/1.5136070.
Scott, R. H. H., Booth, N., Hawkes, S. J., Symes, D. R., Hooker, C., Doyle, H. W., Olsson-Robbie, S. I., Lowe, H. F., Price, C. J., Bigourd, D., Patankar, S., Mecseki, K., Gumbrell, E. T., & Smith, R. A. Modeling radiative-shocks created by laser–cluster interactions. United States. doi:https://doi.org/10.1063/1.5136070
Scott, R. H. H., Booth, N., Hawkes, S. J., Symes, D. R., Hooker, C., Doyle, H. W., Olsson-Robbie, S. I., Lowe, H. F., Price, C. J., Bigourd, D., Patankar, S., Mecseki, K., Gumbrell, E. T., and Smith, R. A. Mon . "Modeling radiative-shocks created by laser–cluster interactions". United States. doi:https://doi.org/10.1063/1.5136070. https://www.osti.gov/servlets/purl/1608570.
@article{osti_1608570,
title = {Modeling radiative-shocks created by laser–cluster interactions},
author = {Scott, R. H. H. and Booth, N. and Hawkes, S. J. and Symes, D. R. and Hooker, C. and Doyle, H. W. and Olsson-Robbie, S. I. and Lowe, H. F. and Price, C. J. and Bigourd, D. and Patankar, S. and Mecseki, K. and Gumbrell, E. T. and Smith, R. A.},
abstractNote = {Radiative-shocks induced by laser–cluster interactions are modeled using radiation-hydrodynamic simulations. A good agreement—in both shock velocity and density profiles—is obtained between experiment and simulations, indicating that non-local thermodynamic equilibrium (NLTE) radiative effects are important in the experimental regime examined, particularly at early times (≤30 ns) due to the elevated temperatures (≥35 eV). The enhanced NLTE radiative emission causes the shock to be reduced in amplitude, increased in width, and reduced in propagation velocity, while the amplitude of the radiative precursor is increased. As the density and temperature conditions are relatively modest, this potentially has important implications for the scalings that are used in laboratory–astrophysics to transform between laboratory and astrophysical scales, which do not hold for non-LTE systems.},
doi = {10.1063/1.5136070},
journal = {Physics of Plasmas},
number = 3,
volume = 27,
place = {United States},
year = {2020},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Instability of Taylor-Sedov blast waves propagating through a uniform gas
journal, May 1991


Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facility
journal, May 2013

  • Pak, A.; Divol, L.; Gregori, G.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4805081

HELIOS-CR – A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling
journal, May 2006

  • MacFarlane, J. J.; Golovkin, I. E.; Woodruff, P. R.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 99, Issue 1-3
  • DOI: 10.1016/j.jqsrt.2005.05.031

The acceleration of cosmic rays in shock fronts - I
journal, February 1978


Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays
journal, September 2004


High Intensity Laser Absorption by Gases of Atomic Clusters
journal, April 1997


A study of ambient upstream material properties using perpendicular laser driven radiative blast waves in atomic cluster gases
journal, March 2012


Analysis of microscopic magnitudes of radiative blast waves launched in xenon clusters with collisional-radiative steady-state simulations
journal, August 2013

  • Rodriguez, R.; Espinosa, G.; Gil, J. M.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 125
  • DOI: 10.1016/j.jqsrt.2013.03.019

Laboratory observation of secondary shock formation ahead of a strongly radiative blast wave
journal, February 2006

  • Hansen, J. F.; Edwards, M. J.; Froula, D. H.
  • Physics of Plasmas, Vol. 13, Issue 2
  • DOI: 10.1063/1.2168157

Observation of Laser Driven Supercritical Radiative Shock Precursors
journal, June 2004


Observation of a Velocity Domain Cooling Instability in a Radiative Shock
journal, November 2010


Full-Trajectory Diagnosis of Laser-Driven Radiative Blast Waves in Search of Thermal Plasma Instabilities
journal, February 2008


Developing a Radiative Shock Experiment Relevant to Astrophysics
journal, April 2000

  • Shigemori, K.; Ditmire, T.; Remington, B. A.
  • The Astrophysical Journal, Vol. 533, Issue 2
  • DOI: 10.1086/312621

Characterization of a cryogenically cooled high-pressure gas jet for laser/cluster interaction experiments
journal, November 1998

  • Smith, R. A.; Ditmire, T.; Tisch, J. W. G.
  • Review of Scientific Instruments, Vol. 69, Issue 11
  • DOI: 10.1063/1.1149181

Investigation of Ultrafast Laser-Driven Radiative Blast Waves
journal, August 2001


Local Thermodynamic Equilibrium in Laser-Induced Breakdown Spectroscopy: Beyond the McWhirter criterion
journal, January 2010

  • Cristoforetti, G.; De Giacomo, A.; Dell'Aglio, M.
  • Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 65, Issue 1
  • DOI: 10.1016/j.sab.2009.11.005

Study of high Mach number laser driven blast waves in gases
journal, November 2010

  • Edens, A. D.; Adams, R. G.; Rambo, P.
  • Physics of Plasmas, Vol. 17, Issue 11
  • DOI: 10.1063/1.3491411

From lasers to the universe: Scaling laws in laboratory astrophysics
journal, December 2010


Radiative shell thinning in intense laser-driven blast waves
journal, February 2009


HYADES—A plasma hydrodynamics code for dense plasma studies
journal, January 1994

  • Larsen, Jon T.; Lane, Stephen M.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 51, Issue 1-2
  • DOI: 10.1016/0022-4073(94)90078-7

Explosion of atomic clusters heated by high-intensity femtosecond laser pulses
journal, January 1998


Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740